
Autonomous Driving via Imitation Learn-
ing in a Small-Scale Automotive Platform

A Comparison Between BC, HG-DAgger, and the use of Vari-
ous Inputs

Master’s Thesis in Systems, Control and Mechatronics

Arvid Petersén
Johan Wellander

DEPARTMENT OF ELECTRICAL ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2024
www.chalmers.se

www.chalmers.se

Master’s thesis 2024

Autonomous Driving via Imitation Learning in a
Small-Scale Automotive Platform

Arvid Petersén
Johan Wellander

Department of Electrical Engineering
Division of Signal processing and Biomedical Engineering

Chalmers University of Technology
Gothenburg, Sweden 2024

Autonomous Driving via Imitation Learning in a Small-Scale Automotive Platform
A Comparison Between BC, HG-DAgger, and the use of Various Inputs
ARVID PETERSÉN, JOHAN WELLANDER

© ARVID PETERSÉN, 2024.
© JOHAN WELLANDER, 2024.

Supervisor: Hamid Ebadi, PhD in Computer Science, Infotiv AB
Examiner: Lars Hammarstrand, Department of Electrical Engineering, Chalmers

Master’s Thesis 2024
Department of Electrical Engineering
Division of Signal processing and Biomedical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Image of autonomous platform generation 4. [1]. Reprinted with permission.

Typeset in LATEX

Printed by Chalmers Reproservice Gothenburg, Sweden 2024

iv

Autonomous Driving via Imitation Learning in a Small-Scale Automotive Platform
A Comparison Between BC, HG-DAgger, and the use of Various Inputs
ARVID PETERSÉN, JOHAN WELLANDER

Department of Electrical Engineering
Chalmers University of Technology

Abstract
In recent years, the advancement of autonomous driving (AD) technology has gar-
nered significant interest. Traditionally, AD systems have relied on multiple sub-
modules, each handling specific tasks such as perception, path planning, and vehicle
control. However, an emerging alternative is the implementation of end-to-end sys-
tems, which directly process sensor input to predict vehicle control.

While both reinforcement learning (RL) and imitation learning (IL) are utilized
in end-to-end AD systems, RL often finds its strength in simulated environments,
where agents learn through exploration and failure. In contrast, IL, learning from an
expert model or human, proves more suitable for real-world applications, requiring
substantially less data.

This thesis presents an implementation of IL for achieving autonomous driving on
a go-kart platform. Leveraging both behavioral cloning (BC) and Human Gated
Dataset Aggregation (HG-DAgger), we compare the impact of using an interactive
IL algorithm HG-DAgger compared to BC. Additionally, our research explores the
use of different inputs, including color camera, stereo depth camera, IMU, and the
position of ORB features. We also detail the development of a comprehensive soft-
ware pipeline encompassing data collection, data formatting, model training, and
go-kart control.

For evaluation, the go-kart was driven around a track for three laps using the trained
BC and HG-DAgger models, and assessed based on number of interventions required
per lap, distance without accident, lap time, lap time deviation. The results from
the evaluation indicate an improvement in performance from using HG-DAgger over
BC as well as an improvement from using a stereo depth camera or the position of
ORB features as supplementary inputs to the color camera and IMU.

Keywords: Imitation Learning, Behavioral Cloning, Human Gated Dataset Aggre-
gation, Autonomous Driving, ROS2.

v

Acknowledgements
First of all, we would like to extend our greatest thanks to our supervisor at Infotiv,
Hamid Ebadi, for his significant engagement in our thesis. His constant support,
willingness to discuss various concepts, and guidance throughout this project were
invaluable.

We would also like to sincerely thank our academic supervisor, Lars Hammarstrand,
for his patience, support, and dedication, providing us with the best opportunities
to succeed in our thesis work. His invaluable advice and great ideas were crucial in
ensuring the smooth and successful progression of this project.

A special thanks also goes to Infotiv for giving us the opportunity to work on this
thesis, for their support, and for financing the project. They equipped us with all
the necessary tools and provided support from start to finish, making this project
possible.

Furthermore, we would like to extend our gratitude to Gokartcentralen in Kungälv
for generously allowing us to drive, test, and validate our go-kart at their track.
Without Gokartcentralen and the helpful individuals working there, this project
would not have turned out as it did.

vi

List of Acronyms

Below is the list of acronyms that have been used the most throughout this thesis
listed in alphabetical order:

AD Autonomous Driving
AP4 Autonomous Platform 4
BC Behavioral Cloning
BRIEF Binary Robust Independent Elementary Features
CAN Controller Area Network
CNN Convolutional Neural Network
CONCU Connectivity Control Unit
DAgger Dataset Aggregation
DNN Deep Neural Network
DOF Degrees of Freedom
ECU Electronic Control Unit
E/E Electrical/Electronic
FAST Features from Accelerated Segment Test
FC Fully Connected
GPIO General Purpose Input/Output
HG-DAgger Human Gated Dataset Aggregation
HLC High-Level Control Computer
HWI Hardware Interface Low-Level Computer
IL Imitation Learning
IMU Inertial Measurement Unit
ML Machine Learning
NLL Negative Log Likelihood
NN Neural Network
ORB Oriented FAST and Rotated BRIEF
PDF Probability Density Function
RL Reinforcement Learning
RPi Raspberry Pi
ROS2 Robot Operating System 2
SAD Sum of Absolute Differences
SPCU Steering and Propulsion Control Unit
SSD Sum of Squared Differences

vii

viii

Contents

Abstract v

Acknowledgements vi

List of Acronyms vii

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Background . 2
1.2 Related work . 2
1.3 Objective . 3

1.3.1 Research questions . 3
1.4 Limitations . 4

1.4.1 Gokartcentralen . 4
1.4.2 Localization . 4
1.4.3 Maximum speed . 4

2 Theory 5
2.1 Software . 5

2.1.1 Robot operating system 2 . 5
2.1.1.1 Communication . 5
2.1.1.2 Message types . 7
2.1.1.3 Packages . 7

2.1.2 Containers . 8
2.1.2.1 Docker . 8
2.1.2.2 Images . 9

2.2 Machine learning for autonomous driving 9
2.2.1 Behavioral cloning . 9
2.2.2 DAgger . 9
2.2.3 HG-DAgger . 10
2.2.4 Actor critic policy . 11
2.2.5 Convolutional neural network 12

ix

Contents

2.2.6 Loss functions . 13
2.3 Input data . 14

2.3.1 ORB . 15
2.3.2 IMU . 16
2.3.3 Depth Camera . 16

2.4 Hardware . 18
2.4.1 Centralized E/E architecture 18

3 System Overview 19
3.1 Hardware . 19

3.1.1 Ninebot go-kart platform . 19
3.1.2 Centralized E/E architecture 20
3.1.3 Central master computer & connectivity 20
3.1.4 SPCU . 21

3.2 Software design overview . 22
3.2.1 ROS 2 . 23
3.2.2 High-level computing unit . 23
3.2.3 Hardware interface computing unit 24

4 Method 25
4.1 Implementation of new hardware . 25

4.1.1 Ensuring a modular system 25
4.1.2 Sensors . 26

4.2 Imitation learning . 26
4.2.1 Imitation library . 26
4.2.2 Observations and actions . 27
4.2.3 Behavior cloning network structure 28
4.2.4 HG-DAgger . 29
4.2.5 Simulation . 30

4.3 Data collection . 30
4.3.1 Time synchronization . 31
4.3.2 Data formatting . 31
4.3.3 Continious data collection (HG-DAgger) 32
4.3.4 Real world data collection . 32

4.3.4.1 Training phase . 33
4.4 Data pre-processing . 34

4.4.1 Color images . 34
4.4.2 Depth images . 34
4.4.3 ORBs . 35

5 Evaluation 37
5.1 Validation dataset . 37
5.2 Evaluation measures . 37
5.3 Implementation details . 38
5.4 Experiments . 38
5.5 Results . 38

5.5.1 Repository and dataset . 38

x

Contents

5.5.2 Validation dataset . 38
5.5.3 Real-world experiments . 39

6 Discussion 41
6.1 Performance of IL models . 41
6.2 Software pipeline . 41
6.3 Conclusion . 42
6.4 Future work . 42

6.4.1 Localization . 43
6.4.2 Understanding HG-DAgger decrease in performance 43
6.4.3 Explore the possibility to avoid obstacles 44
6.4.4 Address sensor shortcomings 44
6.4.5 Alternative IL algorithms and hybrid IL-RL models 45
6.4.6 Create a realistic simulation 46

Bibliography 47

xi

Contents

xii

List of Figures

2.1 ROS 2 node interfaces: topics, services, and actions. 6
2.2 Visulization of twist mux . 8
2.3 Visulization of twist stamper . 8
2.4 Concept of convolution and pooling. [29] CC-BY-NC 12
2.5 Fully-connected layer. 13
2.6 IMU with three sensors. 16
2.7 Visualisation of stereo cameras . 17

3.1 Ninebot go-kart. [1]. Reprinted with permission. 20
3.2 Overview of Centralized E/E architecture 20
3.3 Visualization of the central master computer setup and CONCU. [1].

Reprinted with permission. 21
3.4 A circuit diagram of the steering and propulsion control [1]. Reprinted

with permission. 22
3.5 An overview of the software design of the AP4 [1]. Reprinted with

permission. 23
3.6 Communication between HW and ROS. 23
3.7 Overview of Low-level Software implemented on the HWI unit. [1].

Reprinted with permission. 24

4.1 Visualization of modularity on AP4. [1]. Reprinted with permission. . 26
4.2 Structure of Behavioral Cloning Neural Network 28
4.3 Structure of CNN network . 29
4.4 HG-DAgger overview . 30
4.5 Structure of data collection. 31
4.6 Structure of HG-DAgger. 32
4.7 Gokartcentralen circuit. [44]. Adapted with permission. 33
4.8 View from depth camera in both grayscale and after application of a

colormap. 35
4.9 ORB positions overlay on color image 35

5.1 Locations of interactions during validation tests. [44]. Adapted with
permission. 40

6.1 Possible environment to train the AP4 for obstacle avoidance. 44
6.2 Field of view for the AP4 . 45

xiii

List of Figures

xiv

List of Tables

5.1 Loss for the models evaluated . 39
5.2 Results from real-world experiments. 39

xv

List of Tables

xvi

1
Introduction

In recent years, there has been a great interest in autonomous driving (AD) technol-
ogy. AD holds the promise of enhancing safety, efficiency, and cost-effectiveness in
transportation. To ensure a safe system, perception providing information about the
surroundings is one of the key components. Autonomous vehicles achieve perception
by employing diverse algorithms to analyze raw sensory data. Deep Neural Networks
(DNNs) are commonly utilized for this purpose, given their demonstrated success
in tasks like feature extraction, image recognition, and semantic segmentation [2].

Traditionally, AD systems have been designed based on multiple specific modules,
each designed for a distinct purpose such as perception, path planning, and control.
When integrated, these modules collectively form a comprehensive system capable
of autonomous driving [3]. However, there has been a growing interest in end-to-end
systems, where the entire system is based on a single module rather than multiple
specialized ones. These end-to-end systems can directly map raw sensory data into
control signals and have demonstrated promising performance across both common
and rare driving scenarios [4],[5].

Moving away from manually designed systems and onward to end-to-end systems
the state-of-the-art of decision making and path planning has changed. The focus
has shifted toward training models via Imitation Learning (IL), utilizing large-scale
datasets containing expert demonstrations [6].

Additionally, as the research is expanding and AD is becoming more common, the
need for testing and validation of the systems is becoming more important. How-
ever testing a system on a full-size vehicle can be complicated, expensive, and
time-consuming, making it harder for research projects at universities or smaller
companies.

In the past few years autonomous race cars have been developed in various scales
such as Formula Student Driverless [7] and Indy Autonomous Challenge [8]. This has
shown that a reduced scale platform enables rapid development of both hardware
and software while it also reduces the cost drastically.

To allow for more accessible and cost-effective testing compared to testing on a
full-size vehicle, this thesis will employ an end-to-end approach, utilizing models
trained with IL on a small-scale automotive platform. The number of sensors will
be kept low exploring what kind of input could optimize the performance of AD.

1

1. Introduction

Additionally, the platform is designed with a highly modular architecture combined
with a centralized E/E architecture. This design facilitates seamless implementation
and testing of various modules, including different sensors.

1.1 Background

This thesis builds upon the work of E. Magnusson and F. Juthe, who in 2023, in
collaboration with Infotiv, developed a small-scale autonomous platform, known
as Autonomous Platform 4 (AP4), to explore various autonomous driving (AD)
technologies. They augmented a Ninebot go-kart with the necessary hardware and
low-level algorithms, enabling future high-level AD functionalities. The implementa-
tion featured a centralized E/E architecture, with a central master computing unit
responsible for managing control signals to the Electronic Control Units (ECUs),
which handles vehicle operations [1].

The upcoming development will therefore concentrate on high-level driving algo-
rithms integrated into the central master computing unit. As mentioned earlier, the
approach will employ an end-to-end method utilizing IL, which involves training a
DNN based on expert demonstrations. While there are various techniques to train
a DNN for AD, such as reinforcement learning (RL), the challenges associated with
applying RL in real-world training and the promising advancements in IL research
have led to the adoption of the IL approach.

1.2 Related work

The approach in IL is to utilize datasets of expert demonstrations where the system
tries to mimic the demonstration instead of having manually designed systems [4].
There are several different methods of IL and in a study from 2023, a benchmark
comparison was performed of different IL-based policies for autonomous racing [5].
The IL algorithms tested were:

• Behavioral Cloning (BC)

• Data Aggregation (DAgger)

• Human Gated DAgger (HG-DAgger)

• Expert Intervention Learning (EIL)

but also in combination with the RL algorithm Proximal Policy Optimization (PPO)

• BC + PPO

• DAgger + PPO

2

1. Introduction

• HG-DAgger + PPO

• EIL + PPO

The findings derived from the results demonstrate that interactive IL algorithms
notably enhance the performance of autonomous racing. However, HG-DAgger in
combination with PPO performed best in a real-world environment, proving the
integration of RL and interactive IL surpasses the performance, exhibiting swifter
convergence and enhanced stability across diverse scenarios [5].

Autonomous drone racing shares parallels with autonomous car racing, emphasizing
the importance of rapid computational processes for path planning, obstacle avoid-
ance, and lap time minimization. A recent study delved into end-to-end planning
using feature-based imitation learning for autonomous drone racing [9]. By incorpo-
rating the positions of ORB features as additional inputs, they surpassed baseline
methods relying solely on RGB images [9].

1.3 Objective
This thesis aims to implement AD on a small-scale automotive platform using IL,
specifically HG-DAgger and BC. To achieve this, a complete pipeline is necessary,
encompassing data collection, data formatting, training of IL models, and enabling
these models to drive the AP4. Additionally, an investigation will be performed
regarding whether the performance of AD can be improved by incorporating ORB
features or a depth camera in the system. To achieve this the following research
questions will be addressed in this thesis.

1.3.1 Research questions
• How can an effective software pipeline be implemented, allowing for data col-

lection, training, and continuous improvement of IL model using HG-DAgger?

• Can the performance of an autonomous vehicle be improved with additional
input in the form of a depth camera, alternatively using the same amount of
sensors incorporating ORB features derived from the input of an RGB camera?
Based on the metrics number of interventions required per lap, distance without
accident, lap time, lap time deviation.

• Can an improvement in performance be seen driving the AP4 using HG-
DAgger compared to driving the AP4 using BC? Based on the metrics number
of interventions required per lap, distance without accident, lap time, lap time
deviation, and can the same effect be observed with the incorporation of ORB-
features and Depth image as supplementary input?

3

1. Introduction

1.4 Limitations
During the project, several limitations affected what could be achieved. The main
constraints were the limited opportunities to visit Gokartcentralen for testing, train-
ing, and evaluating the system, the lack of localization capabilities, and the maxi-
mum speed of the go-kart platform being 8 km/h.

1.4.1 Gokartcentralen
Throughout the project, testing, data collection for training IL models, and per-
formance evaluation were conducted at Gokartcentralen in Kungälv. While this
provided a consistent environment, for testing, training, and evaluation, it posed
limitations due to restricted access. The track could only be used when customers
did not use it, and the visits were limited to specific times. In total, three visits
to the track were conducted, each visit starting at 11:30 and ending around 18:00
before most customers arrived, resulting in a cumulative time of 19.5 hours.

1.4.2 Localization
There was no localization implemented in the AP4 at the beginning of the project,
and due to the limited time of the project, it was not deemed possible to implement
both AD and localization. This meant that the approach used for AD could not rely
on localization, limiting the approaches, that could be used. Even if IL is a suitable
approach to use without localization the IL methods that could be used were also
limited without localization.

1.4.3 Maximum speed
Due to a problem with connecting to the go-kart platform via the app provided by
Ninebot, it was not possible to change the settings of the go-kart platform. This
meant that the max speed of the AP4 throughout the project was 8 km/h instead
of the actual max speed of the platform which was 24 km/h.

4

2
Theory

In this chapter, we describe the fundamental theory underpinning the existing plat-
form and the theoretical framework necessary to comprehend the advancements
made in the development of the AP4.

2.1 Software
The software structure of the AP4 is based on Robot Operating System 2 (ROS
2) which handles all the communication between the go-kart and the high-level
computer. ROS 2 is one of the key components in this project to create a modular
system since it enables communication between smaller software components and
allows combinations of software using different languages.

2.1.1 Robot operating system 2
ROS was first developed in 2007 and became widely used within robotics and au-
tomatic systems with its modular architecture. ROS 2 is redeveloped from the
ground to address the shortcomings of ROS, while keeping much of the structure
and application programming interface that was used in ROS [10].

2.1.1.1 Communication

A ROS 2 program is separated into different processes for each runnable program,
allowing for a modular system. Each running process is called a node. The nodes can
communicate using topics, services, or actions depending on what type of commu-
nication is needed [10]. In Figure 2.1, communication between nodes is visualized.

5

2. Theory

Figure 2.1: ROS 2 node interfaces: topics, services, and actions.

Nodes within ROS 2 is an executable program running inside the application per-
forming calculations [11]. In a system, many nodes can be utilized to calculate
different tasks such as path planning or localization. All nodes combined will create
a graph where they can communicate with each other using topics and services [11].

Topics is according to [10] the most common way for a user to communicate between
nodes. Topics are an asynchronous message-passing framework. A node can publish
messages to a topic and then that topic can be accessed by any node by subscribing
to that topic. This creates a many-to-many communication structure, visualized in
Figure 2.1.

Services is a request-response style pattern which means a node can request infor-
mation from another node which is then required to give a response. This can be
useful to ensure a task has been completed a visualisation of this can be seen in
Figure 2.1.

Actions allow a node to set a goal for an action within another node. During
the execution of the action, feedback is sent back describing the progress towards
completing the goal. When the action is completed a result is returned describing
the outcome of the action. A visualization of an action can be seen in Figure 2.1.

6

2. Theory

2.1.1.2 Message types

ROS 2 enables nodes to exchange messages of various types using different formats,
offering flexibility when working with different kinds of data. The most common
types used in this project can be seen down below.

Twist messages are useful for transmitting control signals or actions between de-
vices. A twist message consists of two vectors: one for linear and one for angular
motion, each containing three variables describing the directions in the x, y, and z
axes. This message type is commonly employed for sending velocity commands to
a system [12].

Stamped messages can contain different kinds of information. The key factor of
these messages is that they have a timestamp included when the message was sent.
The timestamp can then be used to pair incoming data from different nodes provid-
ing an option for synchronization.

Image messages are commonly used while streaming a video feed via ROS 2. The
message type takes in an image as input and flattens it to a single vector containing
the RGB values of each pixel.

2.1.1.3 Packages

Since ROS 2 is open source and widely used within various research areas, a lot of
different packages exist. These packages provide a wide range of functionalities and
tools that can be integrated into ROS 2 systems to enhance their capabilities and
simplify development processes.

ROS bag is used to record data by subscribing to one or several topics within ROS.
The data is stored in a bag file as it is received, facilitating efficient recording and
subsequent playback. Additionally, the ROS bag tool includes an option to publish a
simulated clock that corresponds to the time when the data was originally collected
[13].

Twist mux provides a node within the package that can subscribe to one or several
twist messages, multiplexing them based on a priority-based scheme. The node
takes in N twist topics, decides what topic has the highest priority, and then sends
out the message of the most prioritized one visualized in Figure 2.2 [14].

7

2. Theory

Figure 2.2: Visulization of twist mux

Twist stamper offers two nodes: one for adding a timestamp and another for re-
moving a timestamp from a twist message. The timestamp addition node subscribes
to a topic, timestamps the received message, and publishes the stamped message to
a new topic. This process is visualized in Figure 2.3 [15].

Figure 2.3: Visulization of twist stamper

Message filters is a package that offers various types of filters for ROS 2 messages.
The specific filter used in this project is the approximate time synchronizer, which is
designed to work with N messages and a predefined slop time. The time synchronizer
function of this filter checks if the differences between the timestamps of the received
messages lie within the specified slop time. If the messages are within the same
period of time, the program continues processing them. Otherwise, the messages
are discarded [16].

2.1.2 Containers
Containers are a package of software, packaging dependencies, and code together
ensuring the software runs the same on all systems. The containers can then be run
on a host operating system (OS) while each container runs its own isolated OS, with
the possibility of running a different OS on each of the containers. The resources of
the host OS are shared between the containers. With the use of containers creating
containerized software, a modular software package can be developed [17].

2.1.2.1 Docker

There are multiple ways to achieve containerized software, one common way is the
use of Docker. Docker is an open-source software that allows developers to build,

8

2. Theory

run, and deploy programs inside something called a docker container which makes
the programs executable in any environment [17].

2.1.2.2 Images

Images are the foundational component within a containerized architecture. An
image can be seen as a blueprint and is a static file containing all the necessary
software to construct a container. These files are immutable, meaning that the code
cannot be changed after the image is created. Consequently, images can be deployed
in any environment of a system [18].

2.2 Machine learning for autonomous driving
Machine learning (ML) is a part of artificial intelligence and computer science that
imitates the way humans learn and gradually becomes better over time [19]. Ma-
chine learning algorithms used in AD are widely spread and can be used for tasks
such as perception and lane-keeping. However, this project will mainly focus on
IL implemented as an end-to-end solution for AD. The IL algorithms used in this
project are BC and HG-DAgger based on Dataset aggregation (DAgger).

2.2.1 Behavioral cloning
Originating from the lane-keeping algorithm proposed in [20] and later the end-
to-end obstacle avoidance algorithm outlined in [21], Behavioral Cloning (BC) has
emerged as a fundamental technique in IL. BC, often utilized as a benchmark for
more advanced IL models, trains a neural network on a dataset consisting of ob-
servations and corresponding expert actions. The primary aim is for the model to
replicate the expert’s behavior, enabling it to predict actions based on new observa-
tions. However, BC faces challenges such as distributional shifts between training
and testing data, where the model may struggle to generalize effectively. Addition-
ally, compounding errors pose a limitation, whereby one error can lead to subsequent
errors as the model is only trained on previously encountered scenarios.

2.2.2 DAgger
Originally proposed in [22], Dataset Aggregation (DAgger) is an iterative algorithm
that trains a deterministic policy. The algorithm is initialized to a policy, denoted
as π̂1, for example, BC. It then utilizes an expert policy π∗ to gather a dataset
D. Subsequently, this dataset is used to train a policy π̂2, and this procedure is
iteratively repeated to reach a satisfactory policy. However, after the first iteration,
the dataset collection is performed by both the expert policy π∗ and the policy π̂n.
This is achieved by randomly selecting which policy to use during each rollout of
trajectories for T steps, with the probability of using the expert policy π∗ denoted
as β and the probability of using the trained policy π̂i denoted as (1 − β). These
trajectories are then collected and aggregated into the original dataset D, with
actions determined by the expert policy π∗ for all trajectories.

9

2. Theory

The parameter β is decreased with each iteration, thereby increasing the probability
of using the trained policy π̂i. Specifically, βN = 1

N

∑N
i=1 βi → 0 as N → ∞. This

ensures that the trained policy increasingly relies on its own decisions rather than
the expert’s. The DAgger algorithm is outlined in Algorithm 1.

Algorithm 1 DAgger [22]
1: Initialize dataset D ← ∅
2: Initialize π̂1 to a policy
3: for i = 1 to N do
4: Let πi = βiπ

∗ + (1− βi)π̂i

5: Sample T -step trajectories using πi

6: Obtain dataset Di of visited states by πi and actions given by the expert
7: Aggregate datasets: D ← D ∪Di

8: Train classifier π̂i+1 on D
9: end for

10: Return the best π̂i based on validation

2.2.3 HG-DAgger
HG-DAgger aims to enhance IL models by enabling training with input from hu-
man experts, as originally proposed in [23]. While based on the DAgger algorithm,
HG-DAgger introduces key differences that make it more suitable for human-gated
training.

Both HG-DAgger and DAgger involve training a model using a combination of
expert and novice policy data, with a gating function determining control of the
agent. However, their approaches to gating differ significantly. In DAgger, the
gating function probabilistically selects actions from either the expert or novice
policy, based on a parameter β ∈ [0, 1]. Conversely, in HG-DAgger, the novice
policy initially controls the agent, and the expert intervenes only when the novice’s
behavior becomes undesirable.

During HG-DAgger training, demonstrations are collected when the expert takes
control of the novice. These demonstrations are then aggregated into the original
dataset used to train the novice policy, and the policy is retrained on the aggregated
dataset. This process is iteratively repeated until the policy meets a predefined level
of performance. The HG-DAgger algorithm is outlined in algorithm 2.

By incorporating human guidance, HG-DAgger offers a robust approach to IL that
adapts to expert input, ultimately producing more effective policies.

10

2. Theory

Algorithm 2 HG-DAgger [23]
1: procedure HG-DAgger (πH , πN1 ,DBC)
2: D ← DBC

3: for epoch i = 1 : K do
4: for rollout j = 1 : M do
5: for timestep t ∈ T of rollout j do
6: if expert has control then
7: record expert labels into Dj

8: end if
9: end for

10: D ← D ∪Dj

11: end for
12: train πNi+1 on D
13: end for
14: return πNK+1

2.2.4 Actor critic policy
In both RL and IL, actor and critic policies are commonly utilized, each with its
own set of strengths and weaknesses. One approach to leverage the strengths of
both while mitigating some of their weaknesses is to employ a combined actor-critic
policy [24].

An actor policy estimates the gradient of performance directly from the actor param-
eters. However, this method carries the risk of high variance in gradient estimation.
Additionally, the actor policy does not consider previous estimations, updating the
gradient independently with each policy parameter update, which may result in
disregarding valuable historical information [24].

A critic policy approximates a value function and optimizes the Bellman equation,
commonly used in algorithms such as Q-learning. The Bellman equation estimates
the value of a state, which can be utilized in algorithms like Q-learning to combine
the values of states visited by the agent’s actions [25], [26]. Critic policies benefit
from the ability to leverage previous information. Nonetheless, they also run the
risk of not guaranteeing a near-optimal solution [24].

The combined actor-critic policy works by letting the critic learn a value function
from the states visited, which is then used for updating the parameters of the actor
policy. This approach allows the critic policy to converge to a near-optimal solu-
tion and facilitates faster convergence for the actor policy, making it a powerful
framework for RL and IL [24].

11

2. Theory

2.2.5 Convolutional neural network
Convolutional neural networks (CNNs) are commonly used for feature extraction
from images, object detection, and pattern recognition. A CNN is built by three
types of layers: convolutional layer, pooling layer, and fully connected (FC) layer
[27].

The convolutional layer constitutes a fundamental component of CNNs. Assuming
the input is a three-dimensional image representing an RGB image with dimensions
height, width, and depth, the raw image input undergoes processing using a kernel,
also known as a filter. The kernel traverses across the pixels of the image, computing
the scalar product of the pixels and the kernel, as illustrated in 2.4a. The interval
over which the kernel moves across the image is referred to as the stride, determining
both the overlap between the kernel and the image and the size of the subsequent
layer [28]. A lower stride value yields a larger output size, while a higher stride value
produces a smaller output size. Consequently, neurons in the subsequent layer only
receive information from the corresponding part of the input image, resulting in a
significant reduction in the number of connections between neurons [28].

The pooling layer aims to down-sample the dimensions further, reducing the com-
plexity and number of parameters within the activation function [28][27]. The most
common pooling function is called max-pooling which returns the maximum value
within the specific sub-region and is visualized in Figure 2.4 (b).

(a) Convolution (b) Pooling

Figure 2.4: Concept of convolution and pooling. [29] CC-BY-NC

FC layers in a CNN resemble traditional artificial neural networks, where all nodes
in the current layer are connected to every node in both the previous and next layers,
illustrated in Figure 2.5 [28]. This component of a CNN is dedicated to performing
classification tasks. However, FC layers are computationally expensive, and efforts
are often made to reduce the number of connections and nodes [28].

12

2. Theory

Figure 2.5: Fully-connected layer.

2.2.6 Loss functions
In ML, a loss function, also referred to as a cost function or objective function,
serves as a metric to evaluate how effectively an ML model’s predictions align with
the actual values. Essentially, it quantifies the disparity between the predicted
output and the true output for a given set of input data. Loss functions are pivotal
in training ML models, as they facilitate the optimization process by furnishing a
signal for adjusting the model’s parameters to minimize error.

There are several ways of calculating the loss while training a neural network. The
methods used in this thesis are called L2 loss, cross-entropy loss, and negative log-
likelihood (NLL) loss.

The L2 loss function serves to minimize the error by calculating the sum of the
squared differences between the true values y and the predicted values ŷ [30]. The
L2 loss is calculated as:

L2LossFunction =
n∑

i=1
(y − ŷ)2 . (2.1)

The NLL loss function aims to maximize the likelihood of predicting the correct
labels by minimizing the negative log-likelihood of the predicted probabilities. It
quantifies the error between the predicted probabilities and the true labels of the
target. The NLL loss function is computed differently depending on whether the
task is a continuous or a discrete classification task. In the discrete domain, the
minimization of NLL loss is computed as:

NLL(y, ŷ) = −
n∑

i=1
(yi log ŷθ,i + (1− yi) log (1− ŷθ,i)) , (2.2)

where y represents the true target labels taking the value 0 or 1 and ŷ represents
the predicted probability distribution for each label [31].

13

2. Theory

In the continuous case, this approach is not possible, instead, a probability density
function (PDF) is utilized. The PDF is a function f(x) over the sample space S,
where S ⊆ R, and represents the probability of a random continuous variable x
being within a certain interval. This probability can be obtained as:

∫ b

a
f(x), dx = P[a < X ≤ b], (2.3)

where a and b are real numbers and the PDF has to fulfill the following constraints:

• f(x) ≥ 0 for all x ∈ R

•
∫∞

−∞ f(x)dx = 1.

Meaning that the PDF is always positive for all x in S and that the integral over S
will always be equal to one [32].

Letting the sample vector S represent all independently drawn samples from the
distribution of the PDF denoted as P, giving S =

(
z0, z1, . . . , z|S|−1

)
. So that zi =(

zi
0, zi

1, . . . , zi
l−1

)
where l is the number of random variables available. The sample

vector is then used to find a probability distribution P̂ as an approximation of the
true probability distribution P. The NLL loss is then defined as:

NLL(S | P̂) = −
|S|−1∑
i=0

log
(
P̂
(
zi
))

. (2.4)

Taking the negative logarithm of the predicted probability penalizes the model more
heavily for low-confidence incorrect predictions, as the negative log function increases
sharply as the predicted probability approaches zero. Conversely, it rewards the
model for confident and accurate predictions, as higher probabilities result in lower
loss values [33].

The cross-entropy loss, also called log loss is very similar to NLL where it is also
used to measure the discrepancy between predicted probabilities and true labels.
The definition is the same as in NLL; however, the implementation of cross-entropy
loss applies a softmax activation and a log transformation, while NLL does not [34].

2.3 Input data
Training a DNN using IL necessitates annotated datasets comprising inputs from
sensors coupled with actions executed by the expert driver. The input data for the
AP4 encompasses an RGB camera, depth camera, inertial measurement unit (IMU),
and an additional input providing the location of key points extracted from the RGB
camera feed, known as ORB features.

14

2. Theory

2.3.1 ORB
Oriented FAST and Rotated BRIEF (ORB) is a 2D object recognition system within
the field of computer science. ORB was first introduced in 2011 by Rubee et al.
and developed in the OpenCV lab as an alternative to traditional methods such
as SWIFT or SURF [35]. As the name indicates, ORB is built by two different
methods: FAST and BRIEF, but with some improvements for ORB.

FAST is the method used to enable keypoint detection in real-time systems matching
visual features. FAST takes one parameter, an intensity threshold between a center
pixel and those in a Bresenham circle around it [36]. Consider a pixel p with a circle
of 16 pixels surrounding it. If p should be considered as a keypoint, there has to
exist at least N, in this case, 12, pixels surrounding it with a greater difference in
intensity than the set threshold [37]. To make the algorithm fast, the comparison
is only done with four of the pixels. If at least three of the four pixels are above
or below the threshold, p is considered as a keypoint. However, FAST does not
provide a certainty that the detected points are indeed a corner. To address this,
ORB includes a Harris corner measure to select keypoints [35]. The Harris corner
measure evaluates the FAST keypoints based on the local intensity gradients in the
image. Keypoints with higher Harris corner scores are more likely to be true corners
and are then selected as a true point of interest [35]. Furthermore, FAST does not
produce multi-scale features. To overcome this, a scale pyramid is created from the
original image, FAST features are calculated, and the resulting keypoints are filtered
using the Harris corner measure [38]. This method effectively produces keypoints at
varying scales, enabling feature detection across different levels of detail within the
image [35].

BRIEF is the second part of ORB which stands for Binary Robust Independent El-
ementary Features. BRIEF is a binary feature descriptor that generates a string for
each keypoint in an image. The way it operates within ORB is by comparing inten-
sity values of pixel pairs surrounding each keypoint and encoding these comparisons
into binary strings [35].

To enhance the robustness and effectiveness of BRIEF, a technique called steered
BRIEF is introduced [35]. This approach involves adapting BRIEF descriptors based
on the orientation of image patches surrounding each keypoint. By leveraging the
patch orientation θ and corresponding rotation matrices, a steered version of the
BRIEF operator is constructed. A 2 · n matrix S is introduced for each feature set
of n binary tests at a location (xn, yn), such that

S =
(

x1, . . . , xn

y1, . . . , yn

)
. (2.5)

To construct the steered BRIEF descriptor, the original descriptor matrix S is multi-
plied by the rotation matrix Rθ, resulting in Sθ = RθS. This transformation allows
BRIEF descriptors to be adjusted based on the orientation of keypoints, resulting
in descriptors that are more invariant to image rotations and transformations [35].

15

2. Theory

For the intensity p at position x the steered BRIEF descriptor is:

gn(p, θ) := fn(p) | (xi, yi) ∈ Sθ. (2.6)

As long as the orientation of the keypoints is consistent, the correct set of points
from Sθ will be used to compute the descriptors [35].

Combining FAST and BRIEF with additional adjustments enables real-time calcu-
lation of keypoints that are invariant to rotations within the image.

2.3.2 IMU

IMU stands for inertial measurement unit, which provides information about veloc-
ity, acceleration, and orientation. Earlier models of IMUs consisted of two types
of sensors: accelerometers and gyroscopes. Accelerometers measure inertial accel-
eration, while gyroscopes measure angular rotation. Newer versions of IMUs often
include a magnetometer, which measures the magnetic bearing direction. This type
of sensor enhances the readings by decreasing the drift issue from the gyroscope.
Most often, each sensor has three degrees of freedom (DOF) in the x, y, and z axes.
Combining the sensors results in an IMU having up to six or nine DOF, depending
on the number of sensors utilized [39].

Figure 2.6: IMU with three sensors.

2.3.3 Depth Camera

A stereo-depth camera allows for the estimation of depth and the creation of an
image with each pixel-value representing the distance from the camera to the object
[40]. A stereo-depth camera works by utilizing two lenses sitting at a distance from
each other. In Figure 2.7, a visualization of a stereo-depth camera setup can be
seen.

16

2. Theory

Figure 2.7: Visualisation of stereo cameras

Let,

P be a point whose distance needs to be determined.
Z be the distance from the camera lenses to the point in the z-direction.
T be the distance between the two camera lenses.
PL and PR be the points as seen in the left and right images captured by the
cameras, respectively.
l1 and l2 be the distance from the left side of the image to the point in the
captured frame in the left and right images, respectively.

The distance from the camera to point P is calculated from the disparity between
the two points PL and PR and the distance between the lenses T , along with the
focal length of the camera f and the physical size of the pixel in the camera sensor
d. The disparity, defined as D = l1 − l2, allows the calculation of the distance Z as
follows:

Z = f

d
× T

D
. (2.7)

To calculate the depth from matching points in the left and right images, the cor-
responding points between the images must be determined. This is achieved by
examining a point in one image and searching for the same point in the other image
within a certain neighborhood. Matching patches of pixels can be determined using
methods such as Sum of Squared Differences (SSD);

SSD(winL, winR) =
∑

x

∑
y

(IwinL
(x, y)− IwinR

(x, y))2 , (2.8)

17

2. Theory

and Sum of Absolute Differences (SAD);

SAD(winL, winR) =
∑

x

∑
y

|IwinL
(x, y)− IwinR

(x, y)| . (2.9)

2.4 Hardware
The small-scaled autonomous platform developed during this thesis is based on a
go-kart from Ninebot. The hardware on the go-kart was implemented by E. Mag-
nusson and F. Juthe in last year’s master’s thesis in collaboration with Infotiv [1].
The design features a centralized E/E architecture, with a central master computer
responsible for executing all algorithms and processing calculations.

2.4.1 Centralized E/E architecture
In a centralized E/E architecture, ECUs function primarily as zone controllers or
edge nodes. Their main role is to interface with sensors and actuators, possessing
limited computing capabilities. Conversely, all complex functionalities, including
the execution of driving algorithms and other computational tasks, are handled by
a high-performance computing unit. This unit processes the necessary data and
sends control signals back to the ECUs, directing vehicle operation [1].

18

3
System Overview

In this chapter, we provide an overview of the AP4 as constructed in the previous
year’s master thesis [1], encompassing both its software and hardware components.
The software is based on ROS 2 while the hardware is based on a centralized E/E
architecture allowing for control of the AP4 through ROS 2.

3.1 Hardware
The AP4 utilizes a go-kart platform from Ninebot as its base. To allow for au-
tonomous driving, additional hardware has been installed, enabling control over the
go-kart’s steering and throttle. The system comprises a high-level control computer
(HLC) for processing and decision-making, a hardware interface low-level computer
(HWI) for direct device control, a CAN network for communication among compo-
nents, and various sensors to gather environmental data.

3.1.1 Ninebot go-kart platform
The AP4 is based on a go-kart kit by Ninebot. The go-kart kit consists of an electric
segway which is used for propulsion of the go-kart. The segway is combined with
a go-kart kit by Ninebot, allowing for steering and propulsion by a driver sitting
in the driver’s seat. The go-kart kit can be seen in Figure 3.1. A centralized E/E
Architecture has been implemented on the go-kart kit to allow for control of the
go-kart kit’s propulsion and steering.

19

3. System Overview

Figure 3.1: Ninebot go-kart. [1]. Reprinted with permission.

3.1.2 Centralized E/E architecture
The hardware of the AP4 is based on a centralized E/E architecture with one central
master computer connected to multiple Electronic control units (ECUs), with each
ECU responsible for its own area. The currently implemented ECUs can be seen in
Figure 3.2 along with the connection between the Central master computer and the
ECUs.

Figure 3.2: Overview of Centralized E/E architecture

3.1.3 Central master computer & connectivity
The central master computer comprises two distinct hardware components linked
by the Connectivity Control Unit (CONCU). This split is necessitated by the lack
of GPIO connections in most off-the-shelf laptops. To address this limitation, a
Raspberry Pi 4b serves as the Hardware Interface Computer (HWI), used for con-
nections to the other ECUs via CAN, while a more powerful High-Level Control
Computer (HLC) assumes responsibility for higher-level control tasks. The HLC,
a laptop running Ubuntu 22.04, orchestrates the AP4’s operations. The CONCU,
which consists of a router enabling both Ethernet and WiFi communication between

20

3. System Overview

the hardware components, facilitates seamless communication between the HLC and
HWI. Figure 3.3 provides a visualization of the central master computer setup and
CONCU, illustrating the hardware components and connectivity infrastructure.

Figure 3.3: Visualization of the central master computer setup and CONCU. [1].
Reprinted with permission.

3.1.4 SPCU
The steering and propulsion control unit (SPCU) is responsible for converting steer-
ing and propulsion signals to physical control of the AP4. For propulsion, this is
achieved by regulating the signals sent to the Ninebot Segway, bypassing those from
the brake and throttle pedal, and directly sending its signal. For steering control, a
DC motor is connected to the steering rod, and the SPCU converts steering signals
into signals that control the DC motor. However, this means that it is not possible
to steer the AP4 via the steering wheel while the system is turned on. Instead, steer-
ing signals are sent from the SPCU to the DC motor. A circuit diagram illustrating
the connections and components between the propulsion, steering, and SPCU can
be seen in Figure 3.4.

21

3. System Overview

Figure 3.4: A circuit diagram of the steering and propulsion control [1]. Reprinted
with permission.

3.2 Software design overview
The implementation of an autonomous system requires multiple software compo-
nents working together. Where the need for the software components is different,
with some hardware interfacing software being time-critical while a lot of the other
software not being time-critical. The software is therefore split into three software
components running on different machines, the components being a hardware inter-
facing machine, a low-level hardware interfacing component, and a high-level control
software component. This design can be seen in Figure 3.5 and further explained in
this section.

To allow for modular software and communication between the different software
components ROS 2 is used. As ROS 2 is well documented and has a large active
community, the use of ROS 2 allows this to be leveraged to allow for new development
on the AP4 to be done with relative ease. ROS 2 is structured by nodes and topics,
enabling communication between different hardware components where the data can
be published and subscribed to.

22

3. System Overview

Figure 3.5: An overview of the software design of the AP4 [1]. Reprinted with
permission.

3.2.1 ROS 2
In AP4 all communication between the high- and low-level computers is handled
by ROS 2. The inputs from the sensors, the actions made to control the car, and
the decisions made by the model are published to the network allowing the HW
components to work together and exchange data. The overall structure of the com-
munication handled by ROS 2 is illustrated in Figure 3.6.

Figure 3.6: Communication between HW and ROS.

3.2.2 High-level computing unit
The Software of the High-Level Computing Unit hosts the high-level software that
is responsible for the collection of data, the camera, and the autonomous control of
the AP4. The high-level software is based on ROS 2 allowing for the software to be
modular and to use standardized packages within ROS 2. The high-level software
allows for the reading of sensor data and implementation of autonomous drive which
is the aim of this project further described in Chapter 4.

23

3. System Overview

3.2.3 Hardware interface computing unit
The Hardware Interface Computing Unit hosts the low-level software which serves
as the intermediary between the High-Level Software, and the Embedded Software,
tailored specifically for the hardware of the AP4 and executed on the Raspberry Pi
(RPi) mounted on the AP4. An overview of the low-level software architecture can
be observed in Figure 3.7.

Figure 3.7: Overview of Low-level Software implemented on the HWI unit. [1].
Reprinted with permission.

The low-level software includes a module, designed to facilitate communication be-
tween the HLC and the ECUs on the AP4 using ROS 2. This module comprises two
primary components: a standard ROS 2 package and a custom-developed package.

The standard ROS 2 package initializes two nodes—one for receiving and another
for sending CAN messages over the CAN bus. The custom package manages the
exchange of data between ROS 2 topics and the CAN bus. It decomposes incoming
CAN frames into separate topics, which are then published to ROS 2. Conversely,
when a message is received from ROS 2, it is encoded and transmitted over the CAN
bus to communicate with the ECUs.

24

4
Method

In this chapter, the additions made to the AP4 during this project to achieve au-
tonomous driving using BC and HG-DAgger are covered. The additions consist of
the implementation of new hardware, recording, synchronizing data, data format-
ting, as well as the implementation of the IL pipeline. These additions together with
the existing system covered in Chapter 3 form the foundations for the implementa-
tion of AD.

4.1 Implementation of new hardware
To reach the goal of implementing AD in AP4, there was a need for additional
hardware, especially sensors. When implementing new hardware on the go-kart the
standard implementation of hardware established in [1] was followed. This ensures
that any further development of the platform down the line can continue working
on the platform without the need to understand multiple different frameworks and
standards.

4.1.1 Ensuring a modular system
The standard for ensuring a modular hardware design established during last year’s
master thesis project is visualized in Figure 4.1. A modular design based on an
aluminum sheet with a rectangular pattern with holes is used. The dimensions of
the aluminum sheet are 500mm long, a width of 250mm, and a thickness of 1.5
mm. The hole pattern has holes of 4 mm in diameter and is evenly distributed in
a rectangular pattern of 15 mm between each hole. This hole pattern is set as a
standard for the complete AP4 [1].

25

4. Method

Figure 4.1: Visualization of modularity on AP4. [1]. Reprinted with permission.

The standard that was established in the previous master thesis project was followed
during this project as well. This was done to avoid any unnecessary confusion for
upcoming projects on the AP4 down the line.

There is also an established standard for ECU casings, with holes aligning with the
aluminum sheets. When adding new sensors or components, this design is to be
used if there is a need for an ECU as this will both save time, avoid the need to
design a new ECU casing, and have a clear standard for future development.

4.1.2 Sensors
A stereoscopic camera of the model OAK-D from Luxonis was implemented on the
AP4 [41]. The OAK-D has a built-in 9-axis IMU, an RGB camera as well as two
grayscale cameras, which can be used to get depth images. The OAK-D camera was
implemented via USB directly into the HLC Computer, while an open-source ROS
2 wrapper and camera drivers provided by Luxonis were used for the camera.

4.2 Imitation learning
To make the AP4 autonomous IL was used. The implementation of the IL algorithm
was done by learning from human drivers, driving around a track. Learning to match
the actions taken by the driver to the observations recorded by the sensors of the
AP4.

4.2.1 Imitation library
The implementation of IL leveraged the imitation learning library Imitation [42],
which is constructed on top of the RL library Stable-Baselines3 [43]. This choice was
made due to the robustness and versatility offered by the Imitation library. Utilizing
this framework enabled the development of IL models in a modular fashion, allowing
for easy customization and adaptation to various tasks and environments.

26

4. Method

One of the key advantages of the Imitation library is its flexibility. It provides a
range of pre-implemented algorithms and functionalities tailored specifically for IL
tasks. Moreover, the library seamlessly integrates with Stable-Baselines3, enabling
future improvements with its extensive set of RL algorithms and tools.

In addition to its modular design, the Imitation library offers comprehensive doc-
umentation and support, making it straightforward to implement and experiment
with different IL methodologies. This facilitated our development process and al-
lowed us to focus on the specifics of our research objectives without being encum-
bered by the intricacies of low-level implementation details.

4.2.2 Observations and actions

The observations were structured in a dictionary format which allows for changing
what input data is used. The inputs that are used for observations are color image,
depth image, ORB locations, and IMU. However, not all inputs are used at all times,
instead, three different combinations of inputs are used. The combinations are;

• Color image and IMU

• Color image, depth image, and IMU

• Color image, ORB locations, and IMU

The ORB locations are structured in a matrix the size of the image inputs, with
ones at the locations of ORBs and zeros otherwise. The IMU data consisting of
acceleration, a and angular velocity, ω in x, y, and z direction, is structured as
follows: [

ax ay az ωx ωy ωz

]
,

while the image data consists of RGB images of size 120 x 160.

The three observation spaces in turn look as follows:

• color image: (120 × 160 × 3), IMU: (1 × 6)

• color image: (120 × 160 × 3), ORB positions: (120 × 160), IMU: (1 × 6)

• color image: (120 × 160 × 3), depth image: (120 × 160 × 3), IMU: (1 × 6)

The action space of the system consists of throttle and steering angle resulting in an
action space of u = [v̄, Ω̄], with v̄ ∈ [−1, 1] and Ω̄ ∈ [−1, 1]. The actions are defined
within [−1, 1] to maintain a normalized action space. These actions are then scaled
to match the inputs used in the AP4.

27

4. Method

4.2.3 Behavior cloning network structure
The IL in this project was implemented using BC as well as HG-DAgger, which is
also based on BC. To train the BC model, demonstrations in the form of observa-
tions and actions were captured from driving the AP4 around the go-kart track at
Gokartcentralen in Kungälv. The captured demonstrations were then fed into the
BC-network, seen in Figure 4.2, where features are first extracted and concatenated
into a feature vector. The features extracted by the feature extractor were then used
as the input for the actor-critic part of the network. The actor trains on predicting
the correct actions, while the critic gives feedback on the predicted actions to the
actor part of the network.

To allow for the different types of inputs and to allow for changing the inputs used,
the neural network used in the BC model was set up as in Figure 4.2.

Figure 4.2: Structure of Behavioral Cloning Neural Network

The inputs are structured in a dictionary format and then using a combined extractor
the features from each of the inputs are extracted and then concatenated into one
feature vector. This allows for changing which inputs are used without changing
the structure of the network. In the case of ORBs and IMU, the data is flattened
directly, while in the case that the input is an image, a CNN is used for the feature
extraction resulting in a flattened vector. The structure of the CNN used for feature
extraction can be seen in Figure 4.3.

28

4. Method

Figure 4.3: Structure of CNN network

The concatenated feature vector is then fed into an actor-critic policy that trains
to determine the correct action from the feature vector. Since the input to the
actor-critic policy consists of already extracted features, the policy includes two
fully connected layers of size 32 for both the actor and the critic.

4.2.4 HG-DAgger
To address the shortcoming of BC generalizing poorly, an HG-DAgger model was im-
plemented. The implemented HG-DAgger algorithm can be seen in Figure 4.4. The
HG-DAgger model is first initialized using BC trained on a dataset of demonstra-
tions. To make a more robust model the AP4 is driven by the model until an expert
driver deems the model to behave undesirably and the expert driver takes control.
When the expert driver has taken control the actions of the expert driver along with
the observations are recorded and aggregated into the initial demonstration dataset.
When finished driving, the model is retrained on the aggregated dataset and is then
repeated until the model behaves desirably. This creates a more robust model that
can adapt to new environments by learning from an expert’s actions.

29

4. Method

Figure 4.4: HG-DAgger overview

4.2.5 Simulation
A simulation was set up to allow for the evaluation and development of the IL algo-
rithms independently from the whole system. The simulation was done in Donkey
Car Simulator allowing demonstrations to be collected from driving a car on a track
in simulation using an Xbox controller. The demonstrations collected in the simula-
tion consisted of synced actions and observations for the complete system, with the
actions being throttle and steering angle, while the observations consisted of only
RGB images, unlike the real-world data.

The demonstrations were then used to train a BC model, which could be tested in
the simulation allowing for evaluation and tweaking of the BC model.

4.3 Data collection
To be able to train a neural network to learn the behavior of an expert driver, data
collection was a vital part. All the inputs from sensors and the actions made by the
driver to control the car had to be saved and synchronized to match each other in
different situations. To increase effectiveness, the method to start up the vital parts
of the data collection was automated by a single start script where the structure can
be seen in Figure 4.5.

30

4. Method

Figure 4.5: Structure of data collection.

The data collection process involves synchronizing sensor observations with the ac-
tions performed by the expert driver, utilizing message timestamps. Data is continu-
ously saved to a pickle file after capturing 3000 pictures ensuring that the high-level
computer does not run out of memory. Simultaneously all raw data published to
ROS 2 is captured by ROSbag as a backup. Additionally, a test script runs in the
background, providing users with real-time feedback on network communication be-
tween the HLC and the HWI, as well as detecting any potential loss of nodes or
topics within ROS 2.

4.3.1 Time synchronization
The time synchronization is handled by the HLC which subscribes to the desired
topics of interest. To ensure accurate synchronization between observations and
actions recorded at slightly different time stamps, a slop time of 0.05 seconds was
implemented. This allows messages published within 0.05 seconds of each other
to be appropriately paired together, aligning observations with the corresponding
actions performed by the expert driver.

The purpose of the slop time is to accommodate slight variations in message times-
tamps while still preventing mismatches, such as pairing an outdated action with a
recent observation or vice versa. This interval, though arbitrary, is deemed reason-
able, considering that data is saved at a frequency of 10 Hz.

Moreover, information is only recorded and saved to a pickle file when all topics are
actively published and the timestamps of the messages fall within the slop time.

4.3.2 Data formatting
The received data is directly placed into a dictionary consisting of color images,
depth images, IMU data, and actions within the same timestamp. A dictionary en-

31

4. Method

ables the possibility of using the same data files combined with easy access to varying
input combinations to train different models. Additionally, all data is transformed
into a Pandas data frame before saving it as a pickle file.

4.3.3 Continious data collection (HG-DAgger)

When a BC model is trained with the desired input and is set up to take control of
the car, the data recording methodology shifts. Instead of continuously collecting
all observations and actions during driving, data recording is restricted to instances
when expert actions are received. This process is illustrated in Figure 4.6.

Figure 4.6: Structure of HG-DAgger.

The actions derived from both the model predictions and the Xbox controller inputs
are published to ROS 2, where the twist mux node determines which commands
should be executed. The twist mux is configured to prioritize commands from the
Xbox controller, ensuring that the go-kart follows the model predictions until input is
received from an expert driver. Upon receiving a message from an expert driver, the
data collection initiates, gathering sensor observations combined with corresponding
actions and aggregating them with the old dataset.

4.3.4 Real world data collection

To keep the environment consistent and to delimit the training and validation pro-
cess, the data collection was made at Gokartcentralen. The track is 650 meters long
and consists of a combined indoor and outdoor track which tests the AP4 of different
road surfaces, tight turns in both directions, lightning, and weather conditions. The
circuit can be seen in Figure 4.7 together with the optimal racing path.

32

4. Method

Figure 4.7: Gokartcentralen circuit. [44]. Adapted with permission.

The initial data collection consists of six laps driven around the track by an expert
driver, yielding approximately 20000 observations and actions. These data points
are distributed over a distance of 3900 meters, equating to roughly five observations
and actions per meter.

Due to the automated pipeline, the data collection was started by a single script
giving information about the progress and formatting the data for the imitation
learning phase.

4.3.4.1 Training phase

The initial dataset was utilized to train various models with different inputs, ensuring
consistent starting conditions for performance evaluation.

When the three models were trained, the data collection was started using DAgger.
One at a time, the models were set up to drive the AP4 autonomously where it
predicted the actions based on the observations made by sensors. When the AP4
did not follow the optimal path or was about to crash into the barriers, a human
expert took over the control. During autonomous driving, no data is recorded.
However, upon detection of signals from a human expert, data collection is promptly
initialized, and the actions are then saved together with the observations ready to
be aggregated into the initial dataset. Since the different models might have varying
flaws in different parts of the circuit, the dataset with corrected actions was saved
to a folder specified for the specific model.

33

4. Method

After the models were driven two laps around the track with new data recorded at
places where the AP4 did not drive as expected, the data was aggregated into the
old dataset and retrained accordingly to algorithm 2.

These steps could then be iterated, collecting new data and updating the policies.
However, due to the limitation of time on the test track, the process was only
repeated two times for each model.

4.4 Data pre-processing
To allow for the data captured when driving the AP4 to be used for training the
IL algorithms, the data had to be pre-processed. The pre-processing of the data
consisted of converting the data format of the images from ROS 2 images to numpy
arrays, calculating positions of ORB features, reformating the IMU data, and lastly
structuring all the data into transitions which is used for training IL algorithms in
the Imitation learning library. This is all explained further in this section.

4.4.1 Color images
The expected input for color images to the BC model is a matrix of size I (120 × 160
× 3), while the images are recorded as I(156 × 208 × 3) and flattened into a vector.
The images are therefore first reformatted into a matrix and then downscaled to
match the input size of I (120 × 160 × 3).

4.4.2 Depth images
As for the color images, the depth images are also extracted as a vector which then
is reformated into a matrix. The depth image is however initially in grayscale, but
is converted into an RGB image using a colormap to match the action space of the
color image as well as RGB images being the expected input to the CNN used for
feature extraction. In Figure 4.8a, a depth image can be seen before being converted
to RGB, while in Figure 4.8b, the same image can be seen after being converted.

34

4. Method

(a) Grayscale (b) Colormap

Figure 4.8: View from depth camera in both grayscale and after application of a
colormap.

4.4.3 ORBs
The computation of ORBs was done from the color images using the Open CV
library’s ORB_create.detect(color image). The function then detects a given amount
of ORB features along with their position. The positions of the ORB features were
then structured into a matrix the size of the color image, with one representing an
ORB feature while zeros representing no ORB feature.

In Figure 4.9 an example where the positions of the ORB features are added as an
overlay to the color image can be seen.

Figure 4.9: ORB positions overlay on color image

35

4. Method

36

5
Evaluation

In this chapter, we delve into the methods employed to evaluate the system’s per-
formance. These methods encompass assessing the individual IL models themselves
using validation datasets, wherein losses are presented. Furthermore, our evaluation
extends to the comprehensive analysis of the entire system. This involves observing
the AP4 in action as it navigates a go-kart track, enabling us to gauge its perfor-
mance firsthand. Along with the methods used for evaluation, the results of the
evaluation are also presented.

5.1 Validation dataset
The validation dataset includes pre-recorded observations with corresponding ac-
tions and real-world testing conducted at the GokartCentralen circuit. The pre-
recorded dataset was utilized for testing different parameter values during training
and consisted of one lap around the track, while real-time data was used to evaluate
the driving performance of the various models.

5.2 Evaluation measures
Real-world testing of the AP4 was essential for validating the system’s effectiveness
and reliability under practical conditions. To gain a comprehensive understanding
of how various inputs affected performance, it was crucial to select measurable and
relevant tests that provided insights into the go-kart’s behavior. A test protocol
was developed and utilized during validation, focusing on the following measurable
parameters:

• Lap time

• Lap time deviation

• Number of interventions per lap

• Distance traveled without interactions

All models, trained using both BC and HG-DAgger, were tested by having the AP4
drive around the track for three laps. The results were recorded in the protocol.
Additionally, a map of the track, as shown in Figure 4.7, was printed. Whenever

37

5. Evaluation

a human interaction was performed, the corresponding location on the track was
marked. This was done to assess if there were specific sections of the track where
the models encountered more or fewer challenges.

5.3 Implementation details
During training, various parameters were adjusted to optimize performance. Each
model underwent training and was saved after 10 epochs with a batch size of 64 and
a learning rate set to 0.001, utilizing the Adam optimizer from PyTorch. The loss
function comprised L2 and entropy losses, both weighted at 0.001, alongside NLL
loss weighted at 1.

5.4 Experiments
The experiments performed during the validation process were to let the AP4 drive
around the track autonomously while measuring the lap time, lap time deviation,
number of interventions and distance traveled without interventions. The objective
was to assess if the driving performance could be enhanced using different inputs
and HG-DAgger compared to BC.

The initial phase of the experiment involved AD by the AP4 using models trained
exclusively with BC. The results from this phase were then used as a baseline for
comparison with the second part, where the AP4 utilized the HG-DAgger algorithm.
During the validation stage, the AP4 only received human actions when it was on
the brink of a collision, rather than for path adjustment utilized in the training
phase.

5.5 Results
In this section, the results from the evaluation are presented. The results consist
of a table for the losses calculated from the validation dataset and a table for the
performance from the real-world test. Furthermore, maps over each test run are
presented, marked with the positions of the interactions during the test drives.

5.5.1 Repository and dataset
The repository containing the developed code from this thesis can be found in [45],
and the dataset with all the recorded data is available in [46].

5.5.2 Validation dataset
In Table 5.1, the loss results for each trained model based on the validation dataset
recorded at Gokartcentralen are presented. The losses are calculated by comparing
the predicted actions with the actions performed by the human driver. The data
column is the number of demonstrations used for training each of the models.

38

5. Evaluation

Table 5.1: Loss for the models evaluated

Model Type Model Data L2 Loss Entropy Loss NLL
BC color 21120 0.0890 0.0022 -1.6102

Color HG color 1 22069 0.1190 0.0020 0.0467
HG color 2 22858 0.1035 0.0017 -0.1989
BC ORB 21120 0.3331 0.0033 2.9339

ORB HG ORB 1 21803 0.3825 0.0031 3.6199
HG ORB 2 22166 0.3021 0.0027 1.8326
BC depth 21120 0.0839 0.0022 -1.6556

Depth HG depth 1 21514 0.0874 0.0019 -1.5751
HG depth 2 21941 0.0634 0.0016 -1.5140

5.5.3 Real-world experiments
The real-world experiments were carried out letting the AP4 drive autonomously
over three laps. In Table 5.2 the average result can be seen. The table includes the
number of demonstrations used to train each model, seen in the data column.

Table 5.2: Results from real-world experiments.

Model Data Lap time [s] ↓ Laptime deviation [s] ↓ No. interventions ↓ Maximum Distance [m] ↑
BC-Color 21120 408,58 22,13 13 250,89
HG-Color 22858 333,54 0,6 2,33 321,78
BC-Depth 21120 378,47 8,37 3,33 296,0376
HG-Depth 21941 466,24 27,86 22,33 72,94
BC-ORB 21120 369,74 4,76 6,67 154,39
HG-ORB 22166 326,34 3,20 1 519,04

In Figure 5.1 the locations of all interactions done during the validation test drive
can be seen. The locations are marked with orange dots for the first lap, pink for
the second, and blue for the third. This is done in separate sub-figures for each of
the HG-DAgger and BC models respectively.

39

5. Evaluation

(a) Behavioral Cloning Color (b) HG-DAgger Color

(c) Behavioral Cloning Depth (d) HG-DAgger Depth

(e) Behavioral Cloning ORB (f) HG-DAgger ORB

Figure 5.1: Locations of interactions during validation tests. [44]. Adapted with
permission.

40

6
Discussion

6.1 Performance of IL models

By reflecting on the results obtained from the evaluation of the system discussed in
subsection 5.5.3, it is evident that overall, our efforts have yielded success. However,
it’s noteworthy to address the unexpected findings regarding the HG-DAgger model
utilizing depth input. While the BC-model incorporating depth input emerged as
the top performer among BC-model variants, the HG-DAgger model witnessed a
surprising decrease in performance, contrary to the observed improvements seen in
other HG-DAgger variants compared to their corresponding BC models.

From the results, it can also be seen that the models with ORB feature positions as
inputs performed better than the pure RGB model counterparts both for BC and
HG-DAgger, which suggests that the use of ORB feature positions as a supplemen-
tary input has a positive effect in AD scenarios.

6.2 Software pipeline

The implemented software pipeline now allows for initial data to be collected from
driving the AP4 platform, with the collected data directly being formatted into
pickle files which are used for training BC models. The training can then be started
for one of the three input formats resulting in a trained BC model.

The BC model can then be driven around the track autonomously and in the case of
a near collision, a human expert can take control. If a human expert takes over the
control, data is collected and formatted into pickle files. This data is then aggregated
into the original data set allowing an HG-DAgger model to be trained. This process
can then be repeated for several iterations until a satisfactory performance has been
reached.

During the training of the models at Gokartcentralen in Kungälv the software
pipeline proved to be effective allowing for multiple iterations of HG-DAgger to
be trained during one visit. Encompassing, data collection, data formatting, train-
ing, and running the models. There was however a bottleneck in the time it took to
train the models, taking between 20-40 minutes depending on the inputs used for
the model.

41

6. Discussion

6.3 Conclusion
The objective of this thesis was to implement an effective software pipeline allowing
for data collection, data formatting, and setting up the structure for IL. It also in-
cludes training end-to-end models based on the recorded data with various inputs
and the implementation of AD using the trained models. The IL algorithms imple-
mented during this project are HG-DAgger as well as BC as a baseline. The models
were implemented with RGB images and IMU as input, as well as two models with
additional input. One with the positions of ORB features as an extra input and one
with depth image as an extra input.

Except for the HG-DAgger model with depth image as a supplementary input,
there was a clear improvement in performance after two iterations of HG-DAgger
compared to the base BC model, for both the pure RGB model and the model
with supplementary ORB features positions. It can therefore be concluded with
some certainty that the use of HG-Dagger had a positive effect on the performance
compared to pure BC. Even if further research is needed to understand why there
were such unexpected results from HG-DAgger model with depth input.

It can also be concluded that an effective software pipeline has been implemented.
Allowing for easy data collection, data formatting, training of models and iteratively
retraining of the models using HG-DAgger.

When it comes to concluding the effect of using ORB feature positions and depth
images as supplementary, the result is a bit more inconclusive. As the models with
ORB feature positions outperformed the RGB model counterpart, both for the BC
and HG-DAgger model, it can be concluded that the use of ORB-feature positions
had a positive effect on performance compared to the use of only RGB-image as
input. However, the effect of the depth image as a supplementary is less conclusive.
Looking at the BC models, the model with depth input was the top performer
and was expected to be the best performer for the HG-DAgger model as well, but
instead, we saw unexpected behavior. Even if the expectation still holds it can
not be concluded with the current result and further research would be needed, to
understand why the HG-DAgger model with depth input behaved as it did.

6.4 Future work
Both of the developed hardware and software structures of the AP4 are highly
modular enabling future enhancements such as discovering new algorithms within
the HLC and adding additional sensors to the go-kart. In this section some thoughts
on how the development of the AP4 could proceed based on the insights made during
this thesis.

42

6. Discussion

6.4.1 Localization

Localization is a critical aspect of AD, enabling vehicles to navigate efficiently from
point A to point B in urban environments. Similarly, in the specialized context of
autonomous racing, while the vehicle may not need to determine its global posi-
tion on Earth, localization remains critically important. For racing vehicles, precise
localization relative to the racetrack is essential for optimizing lap times and increas-
ing speeds. By accurately understanding its position on the track, an autonomous
racing car can adhere to the most optimal racing line, effectively balancing speed
and handling to maximize performance.

Localization of autonomous vehicles can typically be achieved using traditional
methods such as GPS or LiDAR, which constructs a 3D point cloud of the en-
vironment. However, regarding go-kart tracks most often located indoors, GPS
connectivity might be insufficient due to poor satellite reception which excludes the
use of a GPS. While LiDAR remains a viable option as an additional sensor to the
system, the wish to keep the cost down and the number of sensors low, alternative
methods are available for this.

One such solution to localize the vehicle on the track would be to utilize the already
implemented ORB features in the system. This could be done by utilizing the
existing open-source library called ORB SLAM3 [47]. ORB SLAM3 effectively and
accurately maps the environment pinpointing the position of the ORB features and
builds a 3D map using an IMU and a monocular, stereoscopic, or RGB-D camera.

By constructing a 3D map of the environment and incorporating the predefined
optimal track path, the HLC could be fine-tuned. The predictions of the next
action would still be made based on the visual input from the cameras, but by
incorporating the actual position of the vehicle given by localization relative to the
optimal path, the steering actions could be tweaked by a closed-loop control system.

6.4.2 Understanding HG-DAgger decrease in performance

At the current state, the aggregation of more data to the model utilizing depth
image as supplementary input resulted in a large drop off in performance. As can
be seen in Figure 5.1c, Figure 5.1d, along with Table 5.2. The reason for this
drop-off in performance is not fully understood and an investigation of the reason
behind the drop-off would lead to a better understanding of both the input data and
the HG-DAgger implementation. This would allow for the construction of a more
robust system and allow further improvements to be made.

One possible approach to better understand the decrease in performance would be
to rerun the last iteration of HG-DAgger for the depth camera, collecting new data
and retraining the model. If this were to result in an improved model, it would be
of interest to compare the new data collected to the data which was collected in this
project to understand what the difference in the data was.

43

6. Discussion

6.4.3 Explore the possibility to avoid obstacles

During this project, the aim was for the AP4 to autonomously drive around the track.
It would however be of interest to explore if the implemented software pipeline and
IL algorithms would transfer well to other scenarios if trained on those instead. One
such scenario would be to train the system on obstacle avoidance instead. This
could be done by training the AP4 on weaving through a grid pattern of cones to
avoid hitting cones which can be seen in Figure 6.1.

Figure 6.1: Possible environment to train the AP4 for obstacle avoidance.

6.4.4 Address sensor shortcomings

During real-world test and validation at Gokartcentralen it was noticed that in some
locations of the track, often after a corner, the AP4 was driving very close to the
barriers of the track. Due to the visual input to the system being directed directly
forward with a limited field of view, there is no input of the environment reaching
the sides of the AP4, visualized in Figure 6.2.

44

6. Discussion

Figure 6.2: Field of view for the AP4

To address this issue a wide-angle camera could be used instead, increasing the field
of view up to 180◦. Alternatively, more sensors could be added directed to the sides
of the AP4, covering the blind spots.

6.4.5 Alternative IL algorithms and hybrid IL-RL models
While the scope of this project primarily focused on the implementation of IL using
BC and HG-DAgger, there are intriguing avenues for future research in enhancing
autonomous driving systems.

One such avenue involves exploring alternative IL algorithms beyond BC and HG-
DAgger. With the established modular software pipeline for IL, investigating the
performance of alternative IL algorithms or refining existing ones presents an op-
portunity for improving the capabilities of autonomous driving systems.

Additionally, the combination of IL and RL represents another promising area for
future investigation. Models can be trained initially using IL and then further refined
through RL, resulting in a hybrid approach that offers greater robustness than pure
IL models while requiring less training data compared to pure RL models.

Another compelling strategy proposed in [48] involves integrating IL and RL by
enabling the model to predict forthcoming states and iteratively refine its predictions
using RL. This approach holds the potential for enhancing the adaptability and
performance of autonomous driving systems in complex real-world environments.

Exploring the potential of alternative IL algorithms and hybrid IL-RL models rep-
resents a promising direction for future research, offering opportunities to develop
more resilient and efficient autonomous driving algorithms.

45

6. Discussion

6.4.6 Create a realistic simulation
To allow for the implementation and faster testing of IL and RL models it would be
beneficial to have a robust simulation. A simulation that is similar enough to the
real world would allow for the exploration of training in simulation and then driving
in the real world. This is an interesting area to explore if it is done successfully, it
would open many opportunities for testing different models quickly, as well as using
methods such as pure RL, more suitable for simulation in a physical system.

46

Bibliography

[1] E. Magnusson and F. Juthe, “"design of a modular centralized E/E and soft-
ware architecture for a small-scale automotive platform",” 2023. [Online]. Avail-
able: http://hdl.handle.net/20.500.12380/307245.

[2] D. Parekh, N. Poddar, A. Rajpurkar, et al., “A review on autonomous vehicles:
Progress, methods and challenges,” Electronics, vol. 11, no. 14, 2022, issn:
2079-9292. doi: 10.3390/electronics11142162. [Online]. Available: https:
//www.mdpi.com/2079-9292/11/14/2162.

[3] L. Le Mero, D. Yi, M. Dianati, and A. Mouzakitis, “A survey on imitation
learning techniques for end-to-end autonomous vehicles,” IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 9, pp. 14 128–14 147, 2022.
doi: 10.1109/TITS.2022.3144867.

[4] L. Le Mero, D. Yi, M. Dianati, and A. Mouzakitis, “A survey on imitation
learning techniques for end-to-end autonomous vehicles,” IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 9, pp. 14 128–14 147, 2022.
doi: 10.1109/TITS.2022.3144867.

[5] X. Sun, M. Zhou, Z. Zhuang, S. Yang, J. Betz, and R. Mangharam, “A bench-
mark comparison of imitation learning-based control policies for autonomous
racing,” in 2023 IEEE Intelligent Vehicles Symposium (IV), 2023, pp. 1–5.
doi: 10.1109/IV55152.2023.10186780.

[6] L. Le Mero, D. Yi, M. Dianati, and A. Mouzakitis, “A survey on imitation
learning techniques for end-to-end autonomous vehicles,” IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 9, pp. 14 128–14 147, 2022.
doi: 10.1109/TITS.2022.3144867.

[7] SAE. “Formula sae.” Accessed: January 30, 2024. (2024), [Online]. Available:
https://www.fsaeonline.com/.

[8] I. A. Challenge. “Indy autonomous challenge.” Accessed: January 30, 2024.
(2024), [Online]. Available: https://www.indyautonomouschallenge.com/.

[9] H. X. Pham, M. Heiss, D. Tran, M. A. Nguyen, A. Q. Nguyen, and E. Kayacan,
“Orb-net: End-to-end planning using feature-based imitation learning for au-
tonomous drone racing,” in ISR Europe 2023; 56th International Symposium
on Robotics, 2023, pp. 16–21.

[10] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot op-
erating system 2: Design, architecture, and uses in the wild,” Science Robotics,
vol. 7, no. 66, eabm6074, 2022. doi: 10.1126/scirobotics.abm6074. [Online].

47

http://hdl.handle.net/20.500.12380/307245
https://doi.org/10.3390/electronics11142162
https://www.mdpi.com/2079-9292/11/14/2162
https://www.mdpi.com/2079-9292/11/14/2162
https://doi.org/10.1109/TITS.2022.3144867
https://doi.org/10.1109/TITS.2022.3144867
https://doi.org/10.1109/IV55152.2023.10186780
https://doi.org/10.1109/TITS.2022.3144867
https://www.fsaeonline.com/
https://www.indyautonomouschallenge.com/
https://doi.org/10.1126/scirobotics.abm6074

Bibliography

Available: https://www.science.org/doi/abs/10.1126/scirobotics.
abm6074.

[11] O. Robotics. “Ros 2.” Accessed: April 18, 2024. (2018-12-04), [Online]. Avail-
able: https://wiki.ros.org/Nodes.

[12] O. Robotics. “Ros 2 twist messages.” Accessed: April 19, 2024. (2018), [Online].
Available: https://abedgnu.github.io/Notes-ROS/chapters/ROS/00_
getting_started/overview.html.

[13] O. Robotics. “Bags.” Accessed: April 23, 2024. (2022-02-15), [Online]. Avail-
able: https://wiki.ros.org/Bags.

[14] O. Robotics. “Twistmux.” Accessed: April 23, 2024. (2018-09-13), [Online].
Available: https://wiki.ros.org/twist_mux.

[15] J. Newans. “Twiststamper.” Accessed: April 23, 2024. (2021-01-29), [Online].
Available: https://github.com/joshnewans/twist_stamper.

[16] O. Robotics. “Messagef ilters.” Accessed: April 23, 2024. (2024-04-16), [On-
line]. Available: https : / / github . com / ros2 / message _ filters / tree /
rolling.

[17] A. Mouat, Using Docker: Developing and Deploying Software with Containers.
O’Reilly Media, 2015, pp. 3–11, isbn: 9781491915929. [Online]. Available: ht
tps://books.google.se/books?id=wpYpCwAAQBAJ.

[18] Aqua. “Container images: Architecture and best practices.” Accessed: May 3,
2024. (2021), [Online]. Available: https://www.aquasec.com/cloud-native-
academy/container-security/container-images/.

[19] IBM. “What is machine learning?” Accessed: January 19, 2024. (2023), [On-
line]. Available: https://www.ibm.com/topics/machine-learning.

[20] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,”
in Advances in Neural Information Processing Systems, D. Touretzky, Ed.,
vol. 1, Morgan-Kaufmann, 1988. [Online]. Available: https://proceedings.
neurips.cc/paper_files/paper/1988/file/812b4ba287f5ee0bc9d43bbf
5bbe87fb-Paper.pdf.

[21] Y. Lecun, U. Muller, J. Ben, E. Cosatto, and B. Flepp, “Off-road obstacle
avoidance through end-to-end learning.,” 2005-01.

[22] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and
structured prediction to no-regret online learning,” in Proceedings of the Four-
teenth International Conference on Artificial Intelligence and Statistics, G.
Gordon, D. Dunson, and M. Dudík, Eds., ser. Proceedings of Machine Learn-
ing Research, vol. 15, Fort Lauderdale, FL, USA: PMLR, 2011-11–13 Apr,
pp. 627–635. [Online]. Available: https://proceedings.mlr.press/v15/
ross11a.html.

[23] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer, “Hg-
dagger: Interactive imitation learning with human experts,” in 2019 Inter-
national Conference on Robotics and Automation (ICRA), 2019, pp. 8077–
8083. doi: 10.1109/ICRA.2019.8793698.

[24] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” in Advances in Neural
Information Processing Systems, S. Solla, T. Leen, and K. Müller, Eds., vol. 12,
MIT Press, 1999. [Online]. Available: https://proceedings.neurips.cc/

48

https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://wiki.ros.org/Nodes
https://abedgnu.github.io/Notes-ROS/chapters/ROS/00_getting_started/overview.html
https://abedgnu.github.io/Notes-ROS/chapters/ROS/00_getting_started/overview.html
https://wiki.ros.org/Bags
https://wiki.ros.org/twist_mux
https://github.com/joshnewans/twist_stamper
https://github.com/ros2/message_filters/tree/rolling
https://github.com/ros2/message_filters/tree/rolling
https://books.google.se/books?id=wpYpCwAAQBAJ
https://books.google.se/books?id=wpYpCwAAQBAJ
https://www.aquasec.com/cloud-native-academy/container-security/container-images/
https://www.aquasec.com/cloud-native-academy/container-security/container-images/
https://www.ibm.com/topics/machine-learning
https://proceedings.neurips.cc/paper_files/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.mlr.press/v15/ross11a.html
https://proceedings.mlr.press/v15/ross11a.html
https://doi.org/10.1109/ICRA.2019.8793698
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

Bibliography

paper _ files / paper / 1999 / file / 6449f44a102fde848669bdd9eb6b76fa -
Paper.pdf.

[25] R. Bellman, Dynamic Programming. Princeton, NJ: Princeton University Press,
1957. [Online]. Available: https://gwern.net/doc/statistics/decision/
1957-bellman-dynamicprogramming.pdf.

[26] C. J. C. H., “Learning from delayed rewards,” PhD thesis, Cambridge Univer-
sity, 1989. [Online]. Available: https://cir.nii.ac.jp/crid/1570291224996580224.

[27] K. O’Shea and R. Nash, An introduction to convolutional neural networks,
2015. arXiv: 1511.08458 [cs.NE].

[28] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convo-
lutional neural network,” in 2017 International Conference on Engineering
and Technology (ICET), 2017, pp. 1–6. doi: 10.1109/ICEngTechnol.2017.
8308186.

[29] W. Commons, File:convolutionandpooling.svg — wikimedia commons, the free
media repository, [Online; accessed 25-April-2024], 2024. [Online]. Available:
https://commons.wikimedia.org/w/index.php?title=File:Convolution
AndPooling.svg&oldid=868000694.

[30] A. Shekhar. “What are l1 and l2 loss functions?” Accessed: May 3, 2024.
(2019), [Online]. Available: https://amitshekhar.me/blog/l1-and-l2-
loss-functions.

[31] A. D. Tovar. “Negative log likelihood explained.” Accessed: May 7, 2024.
(2019), [Online]. Available: https://medium.com/deeplearningmadeeasy/
negative-log-likelihood-6bd79b55d8b6.

[32] N. University. “Probability density function.” Accessed: May 8, 2024. (), [On-
line]. Available: https : / / www . ncl . ac . uk / webtemplate / ask - assets /
external/maths-resources/statistics/distribution-functions/proba
bility-density-function.html.

[33] P. A. Bosman and D. Thierens, “Negative log-likelihood and statistical hy-
pothesis testing as the basis of model selection in ideas,” in Proceedings of the
Tenth Dutch–Netherlands Conference on Machine Learning. Tilburg Univer-
sity, 2000.

[34] R. Lau. “Cross-entropy, negative log-likelihood, and all that jazz.” Accessed:
May 8, 2024. (2022), [Online]. Available: https : / / towardsdatascience .
com/cross-entropy-negative-log-likelihood-and-all-that-jazz-
47a95bd2e81.

[35] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alter-
native to sift or surf,” in 2011 International Conference on Computer Vision,
2011, pp. 2564–2571. doi: 10.1109/ICCV.2011.6126544.

[36] E. Rosten and T. Drummond, “Fusing points and lines for high performance
tracking,” in Tenth IEEE International Conference on Computer Vision (ICCV’05)
Volume 1, vol. 2, 2005, 1508–1515 Vol. 2. doi: 10.1109/ICCV.2005.104.

[37] D. G. Viswanathan, “Features from accelerated segment test (fast),” in Pro-
ceedings of the 10th workshop on image analysis for multimedia interactive
services, London, UK, 2009, pp. 6–8.

49

https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://gwern.net/doc/statistics/decision/1957-bellman-dynamicprogramming.pdf
https://gwern.net/doc/statistics/decision/1957-bellman-dynamicprogramming.pdf
https://cir.nii.ac.jp/crid/1570291224996580224
https://arxiv.org/abs/1511.08458
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://commons.wikimedia.org/w/index.php?title=File:ConvolutionAndPooling.svg&oldid=868000694
https://commons.wikimedia.org/w/index.php?title=File:ConvolutionAndPooling.svg&oldid=868000694
https://amitshekhar.me/blog/l1-and-l2-loss-functions
https://amitshekhar.me/blog/l1-and-l2-loss-functions
https://medium.com/deeplearningmadeeasy/negative-log-likelihood-6bd79b55d8b6
https://medium.com/deeplearningmadeeasy/negative-log-likelihood-6bd79b55d8b6
https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/statistics/distribution-functions/probability-density-function.html
https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/statistics/distribution-functions/probability-density-function.html
https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/statistics/distribution-functions/probability-density-function.html
https://towardsdatascience.com/cross-entropy-negative-log-likelihood-and-all-that-jazz-47a95bd2e81
https://towardsdatascience.com/cross-entropy-negative-log-likelihood-and-all-that-jazz-47a95bd2e81
https://towardsdatascience.com/cross-entropy-negative-log-likelihood-and-all-that-jazz-47a95bd2e81
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2005.104

Bibliography

[38] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden,
“Pyramid methods in image processing,” RCA engineer, vol. 29, no. 6, pp. 33–
41, 1984.

[39] N. Ahmad, R. A. R. Ghazilla, N. M. Khairi, and V. Kasi, “Reviews on various
inertial measurement unit (imu) sensor applications,” International Journal of
Signal Processing Systems, vol. 1, no. 2, pp. 256–262, 2013, [Online; accessed
25-April-2024].

[40] V. Safin, “Distance estimation,” Medium, 2022. [Online]. Available: https:
//medium.com/analytics-vidhya/distance-estimation-cf2f2fd709d8.

[41] Luxonis. “Oak-d.” Accessed: January 8, 2024. (Accessed: 2024-01-08), [Online].
Available: https://shop.luxonis.com/collections/oak- cameras- 1/
products/oak-d.

[42] A. Gleave, M. Taufeeque, J. Rocamonde, et al., Imitation: Clean imitation
learning implementations, arXiv:2211.11972v1 [cs.LG], 2022. arXiv: 2211 .
11972 [cs.LG]. [Online]. Available: https://arxiv.org/abs/2211.11972.

[43] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann,
“Stable-baselines3: Reliable reinforcement learning implementations,” Jour-
nal of Machine Learning Research, vol. 22, no. 268, pp. 1–8, 2021. [Online].
Available: http://jmlr.org/papers/v22/20-1364.html.

[44] Gokartcentralen, Kungälvs inne/utomhusbana, [Online; accessed 16-May-2024],
2024. [Online]. Available: https://gokartcentralen.se/info/banan/.

[45] A. Petersén and J. Wellander. “Autonomous platform.” Accessed: June 10,
2024. (Accessed: 2024-06-10), [Online]. Available: https://github.com/info
tiv-research/autonomous_platform.

[46] A. Petersén and J. Wellander. “Autonomous platform gokartcentrallen im-
itation learning dataset.” Accessed: June 10, 2024. (Accessed: 2024-06-10),
[Online]. Available: https : / / huggingface . co / datasets / hamidebadi /
autonomous_platform_gokartcentrallen_imitation_learning_dataset.

[47] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel, and J. D. Tardós,
“ORB-SLAM3: an accurate open-source library for visual, visual-inertial and
multi-map SLAM,” CoRR, vol. abs/2007.11898, 2020. arXiv: 2007.11898.
[Online]. Available: https://arxiv.org/abs/2007.11898.

[48] P. Cai, H. Wang, H. Huang, Y. Liu, and M. Liu, “Vision-based autonomous
car racing using deep imitative reinforcement learning,” IEEE Robotics and
Automation Letters, vol. 6, no. 4, pp. 7262–7269, 2021. doi: 10.1109/LRA.
2021.3097345.

I

https://medium.com/analytics-vidhya/distance-estimation-cf2f2fd709d8
https://medium.com/analytics-vidhya/distance-estimation-cf2f2fd709d8
https://shop.luxonis.com/collections/oak-cameras-1/products/oak-d
https://shop.luxonis.com/collections/oak-cameras-1/products/oak-d
https://arxiv.org/abs/2211.11972
https://arxiv.org/abs/2211.11972
https://arxiv.org/abs/2211.11972
http://jmlr.org/papers/v22/20-1364.html
https://gokartcentralen.se/info/banan/
https://github.com/infotiv-research/autonomous_platform
https://github.com/infotiv-research/autonomous_platform
https://huggingface.co/datasets/hamidebadi/autonomous_platform_gokartcentrallen_imitation_learning_dataset
https://huggingface.co/datasets/hamidebadi/autonomous_platform_gokartcentrallen_imitation_learning_dataset
https://arxiv.org/abs/2007.11898
https://arxiv.org/abs/2007.11898
https://doi.org/10.1109/LRA.2021.3097345
https://doi.org/10.1109/LRA.2021.3097345

DEPARTMENT OF ELECTRICAL ENGINEERING
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	Abstract
	Acknowledgements
	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Background
	Related work
	Objective
	Research questions

	Limitations
	Gokartcentralen
	Localization
	Maximum speed

	Theory
	Software
	Robot operating system 2
	Communication
	Message types
	Packages

	Containers
	Docker
	Images

	Machine learning for autonomous driving
	Behavioral cloning
	DAgger
	HG-DAgger
	Actor critic policy
	Convolutional neural network
	Loss functions

	Input data
	ORB
	IMU
	Depth Camera

	Hardware
	Centralized E/E architecture

	System Overview
	Hardware
	Ninebot go-kart platform
	Centralized E/E architecture
	Central master computer & connectivity
	SPCU

	Software design overview
	ROS 2
	High-level computing unit
	Hardware interface computing unit

	Method
	Implementation of new hardware
	Ensuring a modular system
	Sensors

	Imitation learning
	Imitation library
	Observations and actions
	Behavior cloning network structure
	HG-DAgger
	Simulation

	Data collection
	Time synchronization
	Data formatting
	Continious data collection (HG-DAgger)
	Real world data collection
	Training phase

	Data pre-processing
	Color images
	Depth images
	ORBs

	Evaluation
	Validation dataset
	Evaluation measures
	Implementation details
	Experiments
	Results
	Repository and dataset
	Validation dataset
	Real-world experiments

	Discussion
	Performance of IL models
	Software pipeline
	Conclusion
	Future work
	Localization
	Understanding HG-DAgger decrease in performance
	Explore the possibility to avoid obstacles
	Address sensor shortcomings
	Alternative IL algorithms and hybrid IL-RL models
	Create a realistic simulation

	Bibliography

