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Design of a modular centralized E/E and software architecture for a small-scale
automotive platform

Erik Magnusson
Fredrik Juthe

Department of Electrical Engineering
Chalmers University of Technology

Abstract
Autonomous vehicles of tomorrow will require computing units with a high com-
putational capacity to be able to process larger amounts of data. Centralized E/E
architecture can fulfill this demand, but it can also lead to cheaper development
costs, shorter lead times, and improved modularity of software. Furthermore, it
can simplify the development of advanced autonomous driving (AD)- and advanced
driver assistance system (ADAS) algorithms that require high computational ca-
pacity in real time. This thesis investigates the possibility of using a centralized
electrical/electronic (E/E) and software architecture on a small-scale automotive
platform.

A centralized E/E architecture with a central master computer has successfully
been implemented on an autonomous platform. The autonomous platform is built
on an electric go-kart and is augmented with hardware and software to enable self-
driving algorithms to control it. The designed system is modular, scalable, and
suitable to be used in future research and development. Furthermore, a primitive
digital twin to the autonomous platform was developed using Gazebo and ROS2.
The software and the digital twin enable rapid model-based development that can
be easily transferred to the physical platform twin. The end result is a small-scale
automotive platform currently controlled by a drive-by-wire system. Future research
would be to implement ADAS and AD algorithms.

Keywords: Centralized E/E Architecture, Autonomous Vehicle, Platform, Go-kart,
System Design, Implementation, Modularity, Robot Operating System, Docker
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1
Introduction

1.1 Background
Many large automotive companies such as Tesla, Volvo, Google and General Motors
has during recent years focused a lot of their research on developing autonomous
driving system (ADS) and autonomous driving (AD)[1]. According to the U.S Na-
tional Highway Traffic Safety Administration, there are six different levels of auton-
omy (0-5), and as of 2022 car manufacturers have reached level 4 [1]. This level of
autonomy denotes that a human driver does not need to pay much attention to AD’s
tasks of monitoring the environment and taking action. However, this level 4 is not
available for public use. There are still many issues to be solved before reaching level
5, where the human is entirely a passenger. Another perspective on the lower level
of autonomy within vehicles involves a lot of different safety systems. Advanced
driver assistance system (ADAS) that covers levels 1 to 2, where the system aids
the driver with lane keeping, braking, and cruise control.

AD cannot be described as just one technology or system, it consists of several
subsystems that make up the complete system [2]. An AD system can be divided into
three major components systems: algorithms, client systems, and cloud platforms.
Algorithms include techniques to make sense of sensor data, also called sensing,
perception, and decision, client systems consist of the physical hardware platform
and the operating system to integrate the aforementioned algorithms, and cloud
platforms provide heavy computing and storage capabilities for autonomous vehicles.

A major component of the client system is the hardware platform that will ei-
ther enable the possibility for AD or not, through physical limitations in hardware
capability. The hardware platform can be designed through numerous system ar-
chitectures, the conventional approach is the so-called decentralized architecture [3].
A decentralized E/E architecture is where numerous electronic control units (ECU)
are placed out with domain-specific functionalities. Each ECU conducts data pro-
cessing and computations whilst communicating with other domains and ECUs. An
E/E architecture that is fairly new to the automotive industry is the centralized ar-
chitecture, where instead the heavy computations are conducted by a single central
master computer or a small number of computers [4]. The central master computer
has far more computational power than ordinary ECUs that are used in the decen-
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tralized case. Also, a centralized architecture has local ECUs, but they act more
like a gateway for input/output (I/O) for sensors and actuators[4], thus requiring
less computation capability.

At Infotiv, a project called “Autonomous Platform” [5] has been active for several
years and has gone through 3 generations (AP3). The current generation has un-
dergone several iterations with many different definite solutions, making it hard to
integrate or modify existing components and algorithms. Thus it is the purpose of
this thesis to construct and design autonomous platform generation 4 (AP4).

1.2 Purpose
The purpose of an autonomous platform is to have the option to develop and test
AD and ADAS software functions on a simplified hardware platform. As modern
vehicles of today include many interacting subsystems, it is difficult to verify and
validate new functions, therefore creating a minimum viable autonomous platform to
develop and test features related to autonomous driving and active safety is needed.
Furthermore, the platform can act as an education platform to introduce automotive
technologies or as a research platform.

1.3 Objective
The objective of the thesis is to develop a new generation autonomous platform
with a centralized hardware and software architecture. The proposed system shall
be modular so that future research projects can easily modify functionalities and
hardware components, to enable a better working process and standard for software
and hardware when working with the platform.

1.4 Research questions
These are the research questions that will be addressed throughout this master’s
thesis report:

• What are the strengths and weaknesses of having a centralized E/E architec-
ture for an autonomous drive on a small-scale vehicle compared to a decen-
tralized one?

• How can a centralized E/E architecture be designed and implemented on a
small-scale automotive vehicle such that the system has high modularity and
flexibility?

• How can a digital twin of the small-scale automotive vehicle be created to
simulate and verify, the perception of its environment and decision-making in
its AD algorithms?
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1.5 Delimitations

This project will not address:

• Development of high-level algorithms such as Simultaneous Location and Map-
ping or other autonomous drive features. Instead, the focus will be on the
low-level algorithms to enable the possibility of high-level functionality. By
building the fundamental parts of the Autonomous Platform for communica-
tion, driving, steering and sensor readings.

• The platform on which to implement the functionality. There already exists a
go-kart platform, NineBot Gokart S which consists of an electric drive unit,
steering and go-kart chassis. This project will start from scratch on a fresh
go-kart.

• Development of product-ready Printed Circuit Board (PCB) circuits. In an
early stage of development it will not be necessary to develop dedicated elec-
trical boards to satisfy functionality. Since the platform is supposed to be an
ongoing modular research project, locking into a specific hardware solution
early on may hinder later modifications to the platform. Creating dedicated
PCBs will also create unnecessary hardware dependencies.

1.6 Outline of the thesis

The outline and structure of the chapters in the thesis and the content of each are
described below. The theory in chapter 2 introduces background theory about the
technologies and applications used in this thesis. Specifically, relevant background
theory about different E/E architectures, AD, data communication, software, and
digital twins. In chapter 3 an analysis of the previous generations of platforms is
presented. The chapter summarizes the previous designs and their limitations that
laid the foundation for the work done in this thesis. Furthermore, there is also an
analysis of the Ninebot Segway S and Ninebot Gokart conversion kit, which is the
base system on which the new platform is implemented. Chapter 4.1 contains the
requirements for the next-generation AP. Furthermore, measurable specifications
and methods to verify that the final result meets the requirements. The hardware
of the next generation AP is described in detail in chapter 5. The selected cir-
cuit boards, the power supply, and how modular design is achieved are explained
in detail. Chapter 6, gives information about the software structure, digital twin,
pipelines, and software functionalities, including the set-up of communication, con-
nectivity, and control algorithms of the AP4. The results in chapter 7 contain the
verification result, where the method is derived from the verification chapter. Fur-
thermore, there is a summary of the AP4 capabilities regarding control algorithms,
differences in E/E architectures, technical specifications, and inclusion of the digital
twin. Chapter 8 contains discussions on the methods used, source of faults, vali-
dation of the requirements, future research, and chapter 9 presents the conclusions
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made.
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2
Theory

The theory chapter aims to present the essential theory behind the concepts used in
the autonomous platform generation 4. Firstly E/E architecture will be described
as a concept in section 2.1, focusing on centralized and decentralized architectures.
An introduction to autonomous drive and how it is currently used is described in
section 2.2, presenting theory regarding functionality and what sensors can be used.
Theory and information about relevant software and frameworks are described in
section 2.3, more specifically containerization and a software framework on which to
develop functionality. Communication protocols and methods are presented in sec-
tion 2.4. Lastly, the theory behind the concept of having a digital twin is presented
in section 2.5.

2.1 E/E architecture

E/E architectures are how the system of ECUs interact with each other. The ECUs
are small programmable embedded systems often having a microcontroller to exe-
cute desired functions [6]. The microcontroller interfaces with both sensor readings
and actuators through general-purpose input-output (GPIO) pins. Furthermore,
an ECU also includes one or several peripherals to communicate with other ECUs.
Often a specific function is directly implemented on a single ECU. Some examples
of ECU modules are the powertrain control module (PCM) and electronic brake
control module (EBCM). Modern vehicles are constructed with a large number of
ECUs, often exceeding 100 [6]. Thus it is vital to design an E/E architecture that
optimizes the ECU functionalities and the communication among them.

There are two major architectures, decentralized E/E architecture, and centralized
E/E architecture. There are several different subcategories as well and there is no
strict definition for each architecture, but this thesis will categorize domain-oriented
E/E architecture as decentralized and zone-oriented E/E architecture as more cen-
tralized. Differences, strengths, and weaknesses will be touched upon during the
next sections as well as the trends in the industry.
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2.1.1 Centralized E/E architecture

In a centralized E/E architecture several functions and features are located on a
single powerful central master computer [6]. The central master computer is a high-
performance computing (HPC) unit, capable of very complex and heavy calculations
[6]. Instead of traditional ECUs, in a centralized E/E architecture, the ECUs are
so-called zone controllers or edge nodes, that act as coordination units [7], see Fig-
ure 2.1. The coordination units have limited computing power, are programmed with
only relaying functions, and mainly interface with sensors and actuators. Whereas
the actual control algorithms are performed in the central master computer [7].

Figure 2.1: Centralized E/E architecture schematic overview including a central
master computer, control units, and interfaces. As can be seen, the central master

computer is the center for all communication.

2.1.2 Decentralized E/E architecture

The decentralized E/E architecture is the traditional way of designing and con-
structing a vehicle and its components, [3]. In a decentralized E/E architecture,
there is a one-to-one mapping of features/functions and ECU, resulting in many
ECUs. The ECUs in a decentralized E/E can process data from sensor readings
and make calculations for controlling actuators. Each ECU also communicates with
others to achieve higher advanced-level functionalities.
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Figure 2.2: Schematic overview of decentralized E/E architecture. Where each
domain is controlled through a domain controller, the domains communicate over
the backbone. Clearly illustrating the detachment of functions to decentralized

domains.

In Figure 2.2 a domain-oriented E/E architecture is illustrated, but in the context
of this thesis, it will be considered and categorized as a decentralized E/E architec-
ture. It is also called federated architecture [7],[4], as ECUs with tightly connected
features are grouped into domains, like infotainment, active safety, and powertrain.
Each domain communicates through intra-domain communication channels and is
controlled by the domain controller. Communication between each domain takes
place in the central gateway, central electronic module (CEM), also called backbone
[4].

2.1.3 Trends in the automotive industry
Due to increasing software complexity and the development of the next generation
of vehicles, driven by new technologies such as AD, functional safety, connectivity,
and infotainment, there is a need for new architectures, see e.g., [3] and [4]. A key
enabler for being able to handle these new technologies seems to be the centralized
E/E architecture, [3], and there are numerous already commercialized products with
centralized E/E architecture, BMW, Volkswagen, and Jaguar [3]. Furthermore, sup-
pliers of E/E architectures have also shifted towards providing centralized solutions,
such as Delphi and Bosch.

The aerospace industry has already faced the same issues regarding decentralized
and centralized E/E architectures [3]. The result was a successful transition to
centralized E/E architectures. The centralized E/E architecture named Integrated
Modular Avionics (IMA), is known for enabling cost-effectiveness in avionics. Ad-
vantages are a reduction of computing units, communication channels, and I/O
modules. Moreover, IMA helped increase modularity and efficiency in power elec-
tronics and hardware use. Since the aerospace industry faced a more complex and
strict environment to develop a centralized E/E architecture, it is a testimony that
the transition is doable in the automotive industry as well.
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2.2 Autonomous drive
This section aims to describe the background of AD, what purpose it serves, and
what capabilities exist today. Secondly, the set of sensors and how they can be
utilized within an ADS will be presented.

2.2.1 Background of autonomous drive
As mentioned earlier, there are six levels of autonomous drive functionality defined
by the Society of Automotive Engineers (SAE) [8]. Level zero has the capability of a
traditional fully manual car. As the levels increase the functionality and capability
increase readily and a vehicle with level 5 is defined as fully autonomous. Up to level
2 a human driver is still required and responsible for being ready to take control of
the vehicle. When reaching level 3, the driver can sit back during nominal operations
and take control only if the autonomous system fails. As of 2022, there are no level 3
or higher commercial autonomous vehicles for sale to the public. Even though Audi
presented the technology for level 3 autonomy, regulations did not make it possible
to sell the vehicle. Most traditional carmakers are still working towards bringing
level 2 autonomy to the vehicles sold today. A level 4 autonomous drive can drive
itself fully within a predefined area with known conditions. The final level, level 5,
is when a vehicle can drive itself under any conditions without the need for a driver.

Vehicle automated driving functionality can be split into five separate components;
perception, localization and mapping, path planning, decision-making, and vehicle
control, [9]:

• Perception is the component that takes in sensor information, processes and
transforms it into useful information that subsequent areas can use, [10]. The
set of sensors used on the vehicle decides what aspects the vehicle can observe
from its environment. Commonly cameras and LiDARs are used.

• Localization and mapping plays the role of identifying where the au-
tonomous vehicle is located in relation to its environment, [10]. Information
from the perception layer or raw sensory data can be used. Localization is
the part that determines the vehicle’s position in the environment and map-
ping is the part of constructing a view of its surroundings. If there exists no
map of the environment, these two processes can be done simultaneously using
algorithms such as SLAM.

• Path planning has the role of creating a path from where the vehicle currently
is, to where it should be in the future, [11]. It takes in information about its
surroundings from the localization and mapping to plan a suitable path.

• Decision-making relies on the information gathered from the perception
component to decide on how the autonomous vehicle should act, [12]. There
are many things on which to act, some examples are when to change lanes,
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when to accelerate, or when to brake.

• Vehicle control is the component that is responsible for tracking the trajec-
tory provided from the path planning and decision-making components, [13].
A desired change of vehicle state to reach the desired goal has to be converted
into commands that can be executed by the platform. Vehicle dynamics and
kinematics have to be taken into account to provide good driving behavior.
Often longitudinal and lateral movement of the vehicle is controlled separately.
These control commands can then be sent to the accelerator, brake, or steering
actuators to change the state of the platform.

2.2.2 Sensors used in autonomous drive
Sensors are vital components of an autonomous system [14]. Sensors allow the
algorithms used in self-driving to perceive the environment around the vehicle to
feed the decision-making algorithms with information, as mentioned earlier. Using
sensory data the environment can be understood, where the road is, where obstacles
are, and how the environment is changing. Sensor fusion is a tool where data from
multiple sensor sources can be combined to get a better perception of the surrounding
environment or to filter out noise and disturbances. Furthermore, using sensor data
from several different types of sensors, the set of sensors will cover up each sensor’s
shortcomings and complement each other with individual advantages to increase the
overall perception.

The most common sensors used in AD are cameras, LiDARs and radars [14]. Each
sensor has its advantages and disadvantages, the most common ones are described
below:

• Camera video streams are often used. Images can be fed to algorithms that
are very good at recognizing and classifying perceived objects [14]. One po-
tential problem with camera sensor information is that the information in the
image may not be useful in every scenario, as objects in the image have to
stand out from the background.

• LiDAR emits laser beams at extremely high speeds that bounce back from
objects and are then detected by a camera detector [14]. The registered beam
detection will then compose a three-dimensional point cloud of the surround-
ings, with information regarding the depth of objects. Thus making the LiDAR
sensor a perfect tool to give vehicles a three-dimensional perception of their
surroundings. However, the accuracy will drop in bad weather such as rain or
snow.

• Radar transmits radio waves in pulses, when the waves hit objects they bounce
back [14]. Thus giving information regarding the speed and position of the
object. Radars work best for highly reflective materials such as metal objects.
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Radars work great in bad weather but lack the performance of LiDARs to 3D
map the surroundings.

• Ultrasonic Sensor transmit and receive an ultrasound, sound waves that are
beyond human hearing of 20kHz [14]. The sensor can measure a distance of
up to a few meters, making the application of the sensors perfect for low-speed
and tight quarters.

2.3 Relevant software and frameworks
There are several relevant software and frameworks related to AD and how they
can be developed. The following section describes the software that was utilized to
create a coherent and clear software structure for AP4.

2.3.1 Containerized software
Software often requires specific prerequisites, in terms of libraries and configurations
specific to the host computer on which the code runs. Containerized software enables
simplified packing of several software components, from code to libraries and the un-
derlying operating system into one bundle, called a container [15]. Containerization
allows one to define all of this information into one single file and then execute
programs using that configuration. Using containerization software this process can
be very lightweight in terms of computing power overhead, meaning it will not take
up much more resources compared to running the code on a standard computer as
usually done. This also makes the created software very portable, meaning it can be
run on new host computers easily without having to download additional libraries to
make the code run. Containerization of software also makes the applications created
very scalable, several instances of the software can be run simultaneously without
much performance overhead.

Containerization within the automotive industry has lately started to gain attrac-
tion. As an example, Volkswagen, [16], has started to use containerization to test
its in-house developed software. When software has been changed, it automatically
gets run inside containerization software that lets the software interact with other
simulated components in the software stack. This has led to decreased lead times.
Volkswagen is currently working on implementing digital twins for its software com-
ponents using containerization.

2.3.1.1 Docker

A commonly used, free, and open-source containerization software is Docker. It
provides a simple software interface that can be used to create highly specialized
container software environments [17]. It is a framework to manage, create, and
deploy containers with software. In the docker framework, there are three different
terms, docker file, docker image, and docker container. The docker file is a blueprint
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of how the software environment should be set up, i.e. what underlying software
and libraries it requires. A docker file can then be built and compiled into a docker
image that consists of all the software libraries specified in the docker file. The docker
image can then be started as a docker container and the software will run inside
of it. There is an open repository of existing docker files, called Dockerhub, which
developers can use as is or modify to meet a project’s requirements. It is possible
to deploy docker containers on small computing units with limited computational
capacity that operate on the ARM architecture, as an example Raspberry Pi 4.
Docker containers have the possibility to be real-time capable as presented in [18]
as long as the hardware is real-time capable.

Docker Networking is a useful built-in functionality, that makes it is possible to
communicate and send information to, from, and between containers [19]. The
container’s networking can be configured in different modes, such as hosts or bridges
to enable different functionalities.

2.3.2 Scalable and modular software middleware
Software for automotive applications needs to meet requirements and have a specific
set of functionalities before it can be safely used [20]. These design requirements are
modularity and extensibility, performance, simulation and debugging, and usability
and support. There exists several frameworks that meet these criteras, such as
Automotive Data and Time-Triggered Framework and ROS

ROS was developed to create modular and complex software for robotics that could
support distributed computing [20]. The ROS framework implements the underlying
communication between distributed software components on a standardized transfer
of information system and a way for developers to split up software components into
smaller parts but still be able to perform high-level tasks.

2.3.2.1 Robot operating system 2

Since ROS was first developed in 2007, it has gained a lot of attraction within the
robot research area and many of its limitations and faults have been made clear [21].
In 2017 its successor, ROS2, was released. This version aimed to fix the shortcomings
of the first version and added new functionality such as real-time capabilities and
enhanced software security. The core structure of how to use the framework and
its application programming interface (API) is very similar to ROS1. It is possible
to run the ROS2 software framework inside docker containers, as has been shown
in [22]. Utilizing the inherent portability from using containers and the modularity,
scalability and flexibility of the ROS2 framework.

Automotive software of tomorrow has a strict set of requirements to fulfill in order to
be robust [23]. The software in self-driving vehicles of tomorrow needs to be flexible,
real-time capable but most importantly, safe. ROS2 has the capability to match
many of the requirements set for the future automotive software by the AUTomotive
Open System ARchitecture (AUTOSAR) if configured properly. Natively, ROS2 does
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not fulfill all these requirements for commercialized vehicles.

2.3.2.2 ROS2 components and API interfaces

Utilizing the ROS framework one can use several distinct components to construct
complex software with advanced capabilities. The building blocks are part of the
ROS framework API, which means that a developer or system designer does not
need to build the infrastructure behind everything, but simply use the API calls.
This means a system can quickly be redesigned or augmented in a modular way, the
building blocks can simply be rearranged to produce new complex behavior. [20]

Communication in ROS2

Topic is a simple building block [20]. It gives nodes the functionality to com-
municate important information between different parts of the software network of
computational nodes. One part is the publisher, which continuously outputs in-
formation onto the ROS2 network. The other part is the subscriber which listens
for information available on the network. To separate different types of information
into separate communication channels, topics are used. A Topic contains a topic
name and a data field. A computational node only needs to listen to topics that
are relevant to the computations. Any other information on other topics will not be
received. There is a set of standard data type fields available to send over a topic,
such as Integers or strings. A topic can be configured to relay multiple data types
creating modular messages sent over the network. This allows for efficient commu-
nication between different computational nodes in a software network. Information
on ROS2 topics will be pushed to the network even if there is no one listening to
that information currently, there is, therefore, no guarantee that the information
will be used.

Figure 2.3: Publisher and subscriber in a node, illustrating how communication
and dataflow for topics.

Service is another useful building block, it allows one node to request information
from a different node in the network and it must respond. A difference from using
topics to relay important information is that a service request is always guaranteed
to be received and a response must be sent back. In ROS2 this can be done both
synchronously and asynchronously by configuration, meaning the program can be
configured in such a way that it must receive a response before continuing to do
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other tasks. This is a useful feature to guarantee that data or commands have been
received at a target node.

Figure 2.4: Service request and response between two different ROS nodes.

ROS node

A ROS node can be seen as the smallest computational component in a ROS net-
work, commonly called application [20]. It can be a program of any size executing
logic or doing computations, as seen in Figure 2.5. Using topics, the node can take in
external information or send information out from the node. There are often many
nodes in a ROS network doing different tasks, which is illustrated in Figure 2.6.
Some can be pure computational, or simply converting data from one topic to an-
other whilst other nodes can interface with hardware, i.e. reading sensory data or
sending actuator commands. Nodes can be written in either C++ or Python.

Figure 2.5: ROS2 Node algorithm and program structure. The image illustrates
how many algorithms inside a node build a program. And how different nodes can

split up software capabilities.

Figure 2.6: Schematic overview of how a ROS network, can communicate and
distribute functions among a set of nodes.
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2.3.3 Embedded software and systems
Embedded software applications are programs that control specific functions of the
embedded system [24]. Unlike PC applications, embedded software applications are
developed with fixed requirements in order to execute on a specific device. In the
automotive industry embedded systems are referred to as the previously mentioned
ECUs.

2.3.3.1 Integrated development environment

Integrated Development Environment (IDE) is an application for the development
of source code [25]. The IDE contains many features to make development easier.
In the same application, it is possible to compile the source code into executable
machine code, as well as debug the code before compilation to detect errors.

One example of IDE is the so-called PlatformIO, an extension tool for visual
studio code [26]. PlatformIO is a professional tool for embedded systems and soft-
ware developers in order to develop cross-platforms, cross-architecture, and multiple
frameworks. Thus a developer avoids the problematic setup procedures of including
correct toolchains, and libraries and having proper IDE for a specific board. Plat-
formIO supports many frameworks, such as the popular Arduino IDE, furthermore,
it supports many thousands of different development boards. PlatformIO automat-
ically downloads and installs all required dependencies that are stated during the
configuration of the project.

2.3.3.2 Micro controllers

A microcontroller is an integrated circuit containing a processor, GPIO, and memory
to control a specific task in an embedded system [27]. Microcontrollers can also be
referred to as embedded controllers or microcontroller units (MCU). The processor
in a microcontroller is where arithmetic and logic operations take place and other
data processing. The processor follows a set of instructions, that is programmed in
the program memory. The program memory is non-volatile meaning that the pro-
gram instructions are stored over time without a power source. Correspondingly the
data memory is a temporary data storage for when the processor is executing the in-
structions. However, the data memory is volatile meaning that the information will
be lost once the microcontroller reboots. The processor interface with other compo-
nents through its GPIO pins, enabling the microcontroller to receive data and send
instruction in binary. The GPIO peripherals can be connected to sensors, actuators,
and other circuit modules to enable for example a communication protocol.

2.4 Data communication
A parable to explain data communication between different units is how we humans
communicate. Both parties must speak the same language to be understood and
carry on the conversation.
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Similarly, computers communicate with each other through protocols instead of
languages. Protocols are predetermined procedures and sets of rules to transmit
data between electronic units or devices [28]. The sets of rules are needed for the
devices to structure the data information, for either sending or receiving it. There
is a considerable amount of well-established protocol standards for different areas of
use, the relevant ones are presented below in the forthcoming chapters.

2.4.1 Serial communication
This type of communication protocol builds on the principle of sending one bit at a
time[29]. The serial protocol can be classified according to 3 different transmission
modes; Simplex, Half Duplex, and Full Duplex. Simplex communication is one-way
meaning that if the transmitter transmits the receiver can only read where only one
client is being active. However in half Duplex, both clients are active at not at the
same time. For example, one client can send a request to another, which processes
the request and then responds. Full duplex is simply when both clients of sender
and receiver can transmit and receive at the same time.

As previously mentioned, serial communication is defined as sending one bit at a
time while parallel communication sends batches of data, 8, 16 or 32 bits at a
time[29]. One key difference is of course the speed to send data, where parallel is
far quicker than serial. However, the overall efficiency in serial communication often
outbalances the speed aspect. It requires far fewer wires and GPIO pins, making
it cheaper and easier to implement. The Figure 2.7 and Figure 2.8, illustrate the
difference between serial communication and parallel when sending a dataset of 4
bits.

Figure 2.7: Serial Communication
using 4 data bits and little Endian is

illustrated. There is a transmitter (blue)
and receiver (red) which sends data bits
and a clock signal from the transmitter

to the receiver.

Figure 2.8: Parallell Communication
using 4 data bits. In the image, a

transmitter (blue) and receiver (red) are
illustrated. From the transmitter, there
are 4 data bits and a clock signal sent to

the receiver in parallel.

I2C

Inter-Intergrated Circuit (I2C) is a very common communication protocol within
embedded systems and is categorized as a half-duplex. More specifically I2C can
contain several or a single master node, communicating with several or single Slave
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nodes [30]. The protocol builds on using two wires, Serial Data (SDA) and Serial
Clock (SLC). SDA is the wire that sends the data bit by bit and SCL is the wire
that sends the clock signal, synchronizing the communication between all units.
The data is sent through messages, where each message contains an address frame
for a specific slave that the master wants to communicate with. The I2C message
protocol also includes acknowledge/no-acknowledge bits, e.g. slave acknowledges
that the address frame or date frame was successfully received and thereby returns
an acknowledge bit to the master.

Figure 2.9: Illustration of the relationship between Master and Slave units in I2C
communication protocol. SDA and SCL are sent from the master unit to the slave

units.

SPI

Serial Peripheral Interface (SPI) is another common protocol for communication
between microcontrollers and sensors [31]. One major difference between SPI and
the previously mentioned I2C is that SPI master and slave can transfer data in full
duplex. SPI also has the master-slave relationship, where the master node controls
one or several slaves, as shown in Figure 2.10. Master Output/Slave Input (MOSI)
is the wire that sends data to the slave and the corresponding Master Input/Slave
Output (MISO) instead sends data to the master from the slave. Like most protocols,
the SCL is used to synchronize the bit sending and reading. Chip Select (CS) wire
selects which slave should receive the data from the master. However, if the number
of GPIO pins is limited one CS wire can be used for all slaves, called daisy-chained.
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2. Theory

Figure 2.10: Illustration of the relationship between Master, Slaves in SPI
communication protocol. MOSI, MISO and SCL are connected to every slave

device. CS 1 and 2 determine which slave device is currently being communicated
with.

UART

Universal Asynchronous Receiver/Transmitter (UART) is actually a physical circuit.
The circuit’s purpose is to transmit - and receive serial data [32]. UART can only
communicate between two fixed units, with a set baud rate since the communication
is asynchronous and without a clock signal. The dataflow is that the transmitter
Tx of unit 1 is sending data to the receiver Rx of unit 2 to decode, and vice versa
in the other direction. UART transmits its data into packets, where each packet
can contain up to 9 data bits. Advantages of UART include features such as it
only needs two wires and is a well-documented and established method. However,
it is not possible to add multiple slave-master systems like other protocols. See
Figure 2.11 for an illustration of how UART works.

Figure 2.11: Schematic illustration of UART communication. Each device has an
RX and TX pin. RX on device 1 is connected to TX on device 2. TX on device 1

is connected to RX on device 2

2.4.2 Control area network
Control Area Network (CAN) is a serial communication bus protocol and is described
by the standard: ISO-11898 [6]. CAN was developed by BOSCH in the 80s, to
replace the complex wiring systems used in the automotive industry. Since the
reason behind the development of CAN was the automotive industry, the technical
characteristics include robustness and high reliability. CAN enable effective and
high-performance communication between different ECUs without the need for a
host computer.
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CAN is a multi-master protocol consisting of several nodes, where the data is sent
through only two wires CAN_H and CAN_L. The voltage differential between these
two corresponds to the logic levels of bits being transmitted. To avoid collisions
when several nodes want to send data, CAN uses two logical levels: dominant (logic
0) and recessive (logic 1) which is illustrated in Figure 2.12. The dominant will
have priority over the recessive, as the dominant corresponds to a voltage difference
whilst the recessive bit has the same voltage. Thereby the dominant will overwrite
the recessive bit.

Figure 2.12: Illustration of the voltage differentiation in a CAN bus. Where a
voltage differential between CAN high and CAN low corresponds to a dominant

bit and no voltage differential corresponds to a recessive bit.

The data that is transmitted is packed into frames, that are built up by several
fields. These frames describe for example the identifier of the frame, other mutual
bit settings for the protocol, and the data frame. The data frame is where the
information is stored, the frame supports up to 8 bytes of data. The baud rate is
supported up to 1Mbit/s with a maximum length of 40 meters in the CAN_H and
CAN_L wires.
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2. Theory

Figure 2.13: Example illustration of ECUs CAN communication between nodes.
The nodes are connected together with a CAN high and CAN low cable. Each

node has a CAN- controller and transceiver. The two lines are terminated by two
120 Ω resistors

In Figure 2.13 a typical automotive system consisting of several ECUs is illus-
trated. Each ECU’s CAN node consists of two components, CAN controller and
CAN transceiver [6]. The CAN transceiver transmits data from the CAN controller
onto the CAN bus. Similarly, the transceiver also acts as a receiver and reads data
from the CAN bus and converts it for the CAN controller. The CAN controller
processes data both ways between the transceiver and microcontroller. The micro-
controller is where the computing of the data being received or data that should be
sent.

2.5 Digital twins
The concept of digital twins has been around for a long time. The term has come
to mean different things within separate industries [33]. A proposed definition of
digital is presented as follows; It exchanges data in both directions between the
digital model and physical system. Closely related to digital twins, there are two
important alternatives. Digital shadow and digital model. A digital shadow can
only transfer information from the physical object to the digital object and a digital
model can only mimic the behavior of a physical model.

The fidelity of the simulations with respect to real-life performance plays an impor-
tant role in how well the digital twin can test and verify functionality [34]. Regardless
if the digital twin is a good representation of the physical system, if the simulation
environment cannot represent the physical environment where the product is to be
used it will not produce any useful results, [35]. Therefore, a well-constructed digital
twin, tested in a simulation environment that represents the environment where the
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physical product is used is necessary if the simulation results can be used to test
and verify functionality in a trustworthy and repeatable way.

There are several software available in which a developer can insert the digital
twin into a simulated environment [36]. The most common ones are Gazebo, Cop-
peliaSim, MORSE, and Webots.

2.5.1 Benifits of digital twins
There are many applications within the automotive industry and the development
of software where digital twins are used. An example where a digital twin is uti-
lized within the automotive industry is to have a digital twin of vehicle-to-vehicle
communications [37]. Vehicle-to-vehicle communication could have big potential in
the vehicles of the future. The digital twin is a software replica of the physical 5G
network that would be used to simulate sending information between vehicles. Dig-
ital twins can be used for many systems or subsystems in an autonomous vehicle,
an example of a sub-system is a digital twin for the electric drive and propulsion.
[38].

Digital twins are a useful tool to use when developing software and functionality
for modern automotive applications [33]. They allow functionality to be tested in a
very early stage of development in a development or design phase. In later stages
of development, they can be used to verify functionality. When the functionality
is mature and moved onto a physical device or platform a digital twin can be used
to monitor the system behavior and verify new functionality in an easy way. The
digital twin model needs to advance in capability over the lifecycle of a product to
keep being representative of the physical product and its capabilities.

2.5.2 Unified robot description format
A digital twin, its appearance, kinematic behavior, and more can be defined using a
standardized format in ROS [39]. A Unified Robot Description Format file (URDF)
is used to describe the kinematics and dynamics of robotic systems in a standardized
manner. The file is written using XML syntax and due to its standardization can
be read and utilized in many existing software packages in ROS.

The URDF file describes the physical aspects of a robot, such as kinematic and
dynamic behavior, and how it should be visualized using geometrical shapes or
textures. A combination of basic shapes such as boxes, cylinders, and spheres can
be used to visualize any type of right-body robot. The description of a robot is
built using a chain of links and joints. Every robot starts with a base link and onto
this link once can configure how the robot should behave. Common attributes to
configure for a link are; position relative to another link, visualization, inertial and
collision behavior [40]. Two links can then be connected to one another by a joint
[41]. The most commonly used joint types are revolute, continuous, prismatic, and
fixed. The joints can then be configured with dynamical properties.
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2.5.3 Digital twin simulation environment - Gazebo
Gazebo is an open-source physics simulator first created in the mid-2000s [42], yet
it is still relevant and very useful today [36]. Gazebo was released in 2004 as a
3D dynamic open-source physics simulation tool with the purpose of simulating
multi-body and multi-robot environments [42]. The physics simulators of the time
directed towards robotics were either closed source or lacked the functionality gazebo
presented. This new physics simulator was made with the intent to accurately repro-
duce any environment the robot would likely be subjugated to in real-life scenarios.
Every object within the simulation is simulated with mass, velocity, and friction to
capture the dynamics of objects. Gazebo was built with the player device server
compatibility in mind, meaning a robot client connected to the simulator would not
be able to distinguish between the simulated sensory data feedback from real sensory
data. A robot control system can integrate actuator commands and receive sensory
data using external interfaces. At the time of release, Gazebo was not meant to be
used for large multiple robot systems, but at most around ten robots at the same
time [42].

Gazebo is still being developed on today due to its open-source nature, it has a
big community around it developing plugins, creating robot models and adding
functionality [36]. Today Gazebo has native support for ROS making it very ideal
to use when developing robots and digital twins using the ROS framework. The core
functionality of Gazebo in modern times, are plugins. A close concept to interfaces
which was presented in the early 2000s. A plugin is in its most simple form, a piece
of code compiled and inserted into the gazebo simulator to read or write data from
the simulation.This allows developers to interface with Gazebo and control many
aspects of the simulation. From changing the simulated world to controlling robots
within the simulation. Some important groups of plugins are model, sensor, system
and world plugins

2.5.4 Digital sensor twin
As described in subsection 2.5.3, with the use of plugins one can simulate and or
interface with almost anything inside Gazebo, this enables sensor plugins to retrieve
simulation information and turn it into sensory information. There are different
plugins for different types of sensors. For each type of sensor, there is a set of
parameters that can be tuned in order to reach high fidelity with the real-life sensor
counterpart. The plugins can also return the sensor data with a data type identical
to what would be seen when interfacing with a hardware sensor. When Gazebo
was first released, it had interfaces to retrieve camera output, odometry and ray
proximity sensor information [42]. Due to the open-source nature of the gazebo
project, more sensor interface plugins have since been added [43]. With regard to
the trends within the automotive industry and research into autonomous driving, the
most important sensors are cameras, radars and LIDARs [14]. Gazebo can simulate
these and many more sensors related to the dynamics of a vehicle. There are plugins
for cameras, laser, Inertial Measuring Units and Ackermann vehicle control [44].
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3
Analysis of Previous Generations

Infotiv initiated 2019 a project to develop a platform for autonomous systems in
order to follow the trends within the automotive industry [5], see Figure 3.1, and
thereby increase their knowledge and understanding of the problems that the indus-
try is facing. A platform similar to an actual vehicle enables more R&D possibilities
and proves scalability. The end goal of the project is to have a fully self-driving go-
kart, the platform also allows the development and testing of other functionalities
such as lane assistance, driver interface, and adaptive cruise control.

There have been several iterations and numerous theses working on the project
resulting in three previous generations. This chapter will process the specifications
of previous generations and problems with them. Furthermore, an analysis of the
given system on which the AP will be implemented is presented.

Figure 3.1: Image of Autonomous Platform third generation (AP3). It shows the
current hardware, regarding sensors and computing units. Reprinted, with permis-
sion, from Infotiv AB
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3.1 Previous generations

There exist three previous generations of the Autonomous Platform [45]. The first
generation is based on a smaller platform inspired by the sizes of RC car toys. The
system architecture is decentralized, with several different domains or as they are
called within the project, modules. The modules are connected through three dif-
ferent CAN networks and a central electronics module gateway (CEM). The second
generation platform is an iteration of the first one with a new code base and doc-
umentation approach but without any new implementations. The third and latest
generation is far bigger in size and is based on a go-kart system, this platform is the
one the new generation will be based upon and will be analyzed in more detail in
the next section. The third generation has also a decentralized system architecture
and is mainly a scaled-up version of the second platform.

3.2 Ninebot S and go-kart kit

Ninebot S is a Self-balancing scooter and with the integration of the Ninebot Elec-
tric go-kart conversion kit can be turned into a light-weight electric go-kart. This
complete vehicle system is the foundation for AP3 and will be the same platform
for AP4.

Figure 3.2: Ninebot S and Go-kart kit stock configuration Image of go-kart kit
before AP4 implementation.
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3.2.1 System description

Ninebot S

The Ninebot S has two electric motors inside the hoverboard wheels to drive it
forward. It powers on through a power button on the back of the board, where
informative LED lights give the user feedback on settings and states. Furthermore,
Ninebot S can be connected through Bluetooth to the Phone and control the segway
with the so-called Segway-Ninebot S app. This app can control speed limits and give
users informative and illustrative feedback on speed, state of charge in the battery,
etc. In the table below, key technical specifications are stated.

Table 3.1: Specification of Ninebot S self-balancing segway [46].

Category Item Parameters Units

Dimensions
Length 260 mm
Width 548 mm
Height 595 mm

Veichle
Max Speed 16 km/h
Max Slope 15 degree

Operating Temperature -10 <=>40 degree

Battery Pack

Rated Voltage, DC 54.8 V
Maximum Charge Voltage 59.5 V

Rated Capacity 236 Wh
Max discharge power 1000 W

Motor Rated power 400x2 W
Maximum power 800x2 W

Go-kart conversion kit

To implement the go-kart kit the Segway Ninebot S is needed. The go-kart kit has a
separate energy storage to power its electronic components such as a circuit board,
pedal sensors, and headlights. When connecting the go-kart kit with the Ninebot S
through the power outlet of the Segway, Ninebot S will enter its go-kart mode. Thus
it will not act as a self-balancing Segway, instead, it will get propulsion commands
from the circuit board of the go-kart kit through a serial communication wire. Key
technical specifications of the Gokart kit implemented and the segway are stated in
Table 3.2.
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Table 3.2: Specification of Go kart conversion kit. Relevant specifications for the
gokart conversion kit are placed in a table [47].

Category Item Parameters Units

Dimensions
Length 1383 mm
Width 600 mm
Height 822 mm

Veichle

Max Speed 24 km/h
Reversing speed limit 3 km/h

Range 15 km
Steering Ratio 2.1:1 -

Max Slope 15 degree
Operating Temperature -10 <=>40 degree

Brake Brake method eletronic and mechanical brake
Breaking distance 6 m

3.2.2 Analysis of functionalities

Communication between segway and go-kart

The communication between the segway and go-kart is composed of a UART serial
communication. When developing the third generation, Infotiv conducted some
analysis of the serial communication [48]. The analysis was based on an open-
source application called 9BMetrics. However, the protocol in the application is
used for another product, an electric scooter from Ninebot. Thus the communication
protocol could not be entirely deciphered.

In the scope of this thesis, an analysis of the UART communication between the
segway and go-kart was made. In order to replicate the results from previous analy-
ses and investigate if other conclusions could be made. Without any documentation
of the method from Infotiv’s analysis, an entirely new approach was needed in order
to sniff the UART data. Using a microcontroller such as the Arduino Mega and
connecting it to either Tx or Rx, it was possible to log the data. However, the
results from the previous analysis could not be recreated or verified. Without the
correct protocol and information about baud rates, it would be nearly impossible to
decode all data messages.

Propulsion

The propulsion of the go-kart is controlled through two pedals, throttle and brake.
The pedals were disassembled in order to investigate how the sensor is constructed
to read the pedal position. Under each pedal, there is a magnet and a hall sensor.
The hall sensor is connected with three wires, ground, supply voltage, and position
signal. The hall sensor can detect the magnet’s field and its relative position. When
the pedals are pressed down, the magnet’s position will change and the position
signal will increase. The go-kart board will read the signals and convert these
into instructions for the segway that are transmitted through the UART wires.
The complete schematic of the go-kart communication and its key components is
illustrated in figure 3.3.
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Figure 3.3: Overview of the Go-kart key components in a schematic view and the
schematic of voltage measuring setup. An Arduino UNO is connected to the brake

and throttle voltage out wires.

In Figure 3.3 it is illustrated how measuring the voltage magnitude of the throttle-
respectively the brake signal. By connecting the throttle and brake signal in parallel
to a microcontroller’s analog input it is possible to conduct a measuring session, the
circuit diagram is illustrated in figure 3.3. An Arduino Uno was used since it met
the requirements of measuring analog signals with sufficient accuracy and sampling
rate. Since the purpose of the measuring was to determine the limits of voltage
magnitude in the pedals, requirements for accuracy and the sampling rate were very
low and Arduino Uno had enough hardware. Despite there exist complex heavy-
duty equipment such as oscilloscopes and multi-meters. Another advantage of using
a microcontroller is the possibility to log the values over time and plot the values in
real-time. The results are summarized in the table below.

Table 3.3: Voltage magnitude for throttle and brake pedals. Also, the time delay
between pressing the brake pedals two times in order to enter reverse mode.

Signal Magnitude UnitMax Min
Throttle 4.35 0.82 V
Brake 4.33 0.84 V

Enable Reverse 200 50 ms
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3.2.3 System overview and hardware

As previously mentioned the third generation is based on a decentralized architecture
with CEM routing three different CAN busses. Where each of the three CAN busses
corresponds to a domain specific CAN network, and the CEM acts a central gateway
of the backbone.

Figure 3.4: System overview Autonomous Platform generation 3. The system
overview illustrates how different components are connected and how functionality

is split up. Safety, diagnostics & autonomous drive are separate in HW & SW
from power management. Each block is an ECU with specific functionality.

Reproduced, with permission, from Infotiv AB
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(a) Description of hardware
components in the front of AP3

(b) Description of hardware components in the front of
AP3

Figure 3.5: Hardware descriptions of AP3. Illustrating sensors and functionality.
Mounted sensors and actuators are illustrated and described in the images.

Reproduced, with permission, from Infotiv AB

Figure 3.5, describes some of the sensors and other hardware and where it is im-
plemented. Furthermore, each ECU consists of a wide range of different microcon-
trollers and boards. Often it is based on STM32F103C8T6, also known as Bluepill,
but also Arduino nano and the heavy-duty NVIDIA Jetson TX2 Developer Kit.
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3.2.4 Driveline and steering
The driveline is based on the segway Ninebot S and is controlled using the accelerator-
and brake pedals. The voltage signals read from the pedals are low-pass filtered
before being sent to the drive motor. The steering consists of a DC motor EMG49
with a built-in encoder [45]. The motor is connected to a tooth pulley system to gear
up the torque and actuates upon the steering shaft of the go-kart kit. Furthermore,
the motor is controlled through a motor drive board called SABERTOOTH DUAL
2X25A/6-24V MOTOR DRIVER. The motor drive board is then interfaced with a
motor controller called Sabertooth Kangaroo x2 which receives commands from a
microcontroller through a serial port. The turn ratio is determined by a calibration
of Sabertooth Kangaroo x2 and a set of limit switches.

3.2.5 Bugs and issues
There are several issues with previous generations, actually, so much it is the reason
behind this thesis [49]. The platform is out-of-date as it is based on a decentralized
architecture, and the trend in the automotive industry is toward a centralized ar-
chitecture. The documentation is lacking and component descriptions are missing.
Wires and microcontrollers are not labeled, and most implementations are quick
fixes. Overall the complexity of the system makes it difficult to work on.
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4
System Requirements,

Specification and Verification

In order to design a system there needs to be a clear set of requirements to define
the system’s performance and capabilities. This will make the designing and con-
struction easier, knowing the system’s limits and what stakeholders want. Thus the
development makes it easier to prioritize the resources and to acknowledge when a
specific subsystem fulfills the wanted functionalities. The end result can also be an-
alyzed through a set of verification and validation criteria to fulfill the stakeholder’s
wishes.

Requirement defines the performance or capabilities of the system [50]. When stat-
ing requirements it should answer three elements, what, when, and how. Having
boundaries for writing requirements is beneficial in order to have measurable con-
ditions. Thus making it possible to verify each requirement through specifications.
A specification is a measurable quantity that states when a requirement is fulfilled.
Another key point of stating requirements is the use of appropriate level, thus for
the scope of this thesis in developing a new platform.

Verification is the method chosen to confirm that the system meets the requirements,
in a preferably measurable way [50]. The verification results are compared to the
specifications of the requirements.

The following subsections describe the methods of developing the requirements, spec-
ifications, verification, and validation for the platform. Furthermore, the system’s
performance and capabilities from stakeholders are described in the requirement list.

4.1 Requirement and specification list
The requirements and specifications of the system for the platform are influenced
by stakeholders within Infotiv’s autonomous platform project, section 3. The list
of requirements and specifications follows a determined structure, the template is
illustrated in table 4.1. The structure addresses each desired function of the sys-
tem and then states the requirements related to the same domain. The minimum
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requirement is strict and shall be fulfilled, however, the desirable requirements are
non-mandatory. Furthermore, the list also weighs each function in order to prioritize
resources and address the most important requirements first. The complete list of
requirements can be found in subsection 4.1.1.

Table 4.1: Requirement and specification table structure. The table aims to de-
scribe how the requirement and specification list are constructed.

Requirement nr Function Minimum
requirement Desirable requirement Priority Minimum

specificaions
Desirable
specifications

X - Sub requirement 1
- Sub requirement 2 - Sub requirement 1 [10 HIGH - 1 LOW]
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Requirement nr Function Minimum requirements Desireble requirements

1 BMS and Power 
Management 

System

Shall have:
- Switch between battery and PSU
- Supply 12 V
- Enough energy storage capacity to operate for longer periods

Inclusive the minimum requirement, it shall also 
have:
- Internal fuses to protect battery and circuits on the 
platform
- Measure voltage and amperage
- Simple user inerface and be easily operated
- Killswitch 
- function to check SoC 

2 Steering control

Shall have:
- Set steering angles for max left and right

Inclusive the minimum requirement, it shall also 
have:
- easy calibration method for steering angles
- measuring the angle
- set steering accurate according to a given angle

3 Propulsion control

Shall have:
- From a command drive forward, accelerate, brake
- Possibility to activate reverse mode
- Simple Proportional Controller

Inclusive the minimum requirement, it shall also 
have:
- Fast Feedback controller with a speed sensor 

4 Computing unit

Shall have: 
- Capability to run a operating system
- Capability to run highlevel programs such as python
- GPIO pins
- USB port
- Enough memory
- Ethernet
- Possibility to connect monitor, keyboards and mouse

Inclusive the minimum requirement, it should 
also have:
- Possibility to replace and uppgrade computer HW

5 E/E Architecture 
and modularity 

Shall have:
- Centralized E/E architecture 
- Possibility to integrate new ECUs components
- Follow automotive and other standards
- Possibility to change the physical layout of HW

Including minimal requirements, it shall also 
have:
- Easy integration of new ECUs
- Highly scalable and modular functionalities 
- Intuitive Software design for easier 
uppgrading/replacing code
 

6 Transportation Rig / 
Lift aid

It shall:
- Simple to use and ease/prevent of back-pain
- Fit into car with back seats folded down
- Lift the gokart of the ground
- Be able to pull the gokart with the rig

7 Usability / Unit 
Tests

Shall have:
- Simple startup/init procedure
- Internal tests
- Give user feedback when enecountered errors
- Easy to modify SW

8 (SW) Digital Twin

Shall have:
- Central computing units SW enables the use of a digital twin

Including the minimum requirements, it shall 
also have:
- A accurate digital twin of the AP4 implemented
-A digital twin to test high level functionalities
-Simplified 3D model and visualization of AP4 
and/or its sensor readings
- Should be modular and scalable

9 (SW) Modular 
Software for Control

Shall have: 
- Capability to use external software tools/libraries to modify and control 
the AP4

10 Safety 

Shall have:
- All circuits should be dimensioned accordingly to the specifications of 
each circuit board. Furthermore, a sufficient wire diameter shall be used 
according to the current flowing through.
- Battery should be placed and used in a safe way by users
- Battery should have a kill switch connected to emergency stop / 
manual switch
- Go Kart shall have a designated fire extinguisher for electronics 
purpose
- Clear schematics of current carrying cables
- No open terminals

11 Sensors in AP4 (HW 
and SW)

Shall have:
- Possibility to easily add new sensors
- Should fit on AP4

12 Budget
Shall have:
- Meet the budget requirement from Infotiv

4. System Requirements, Specification and Verification

4.1.1 Requirements of AP4
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Requirement nr Function Minimum specification Desireble specification Verification Method

1 BMS and Power 
Management 

System

Shall meet:
-Supplies 12 V +-0.5 V to system continously
- voltage does not drop more than 0.5 V during load
- Autonomous platform should be able to run for one hour 
continously without being connected to a wall outlet

Including minimum specification shall 
also meet:
- 10 A of current continously for 1 hour
- 20 A of current during peaks < 5 
seconds

Minimum
- Measure the voltages in each output 
using multimeter
- Timing of test run

Desireble:
- For switches/Charging measure the 
current and voltage so that it behaves 
expected. i.e when current should flow 
or not in each circuit

2 Steering control

Shall meet: 
- Possibility to manually calibrate steering angles
- within a 20% margin meet a given steering angle

Inclusive the minimum specification, 
it shall also meet:
- Calibration at start up
- measure the angle within a 10% margin

- Manually measure with a protractor
- Optically see how the steering limits 
changes after manual calibration
- Optically see how the calibration 
algroritms returns the limits

3 Propulsion control

Shall meet:
- In reversemode, internal gokart system detects and starts 
beeping
- When throttle is increased the relative velocity is positive
- When braking is increased the relative velocity goes to 0
- At full brake, the braking distance should be lower than 
6m
- The delay between the HWI communication and the go-
kart segway shall be less than 100 ms. 
 

Inclusive the minimum specification, 
it should also meet:
- time constant of less than 1 sec
- error of maximum 10% after 3 sec

Minimum:
- Optically see how the gokart moves 
according to commands given
- manually measure the braking 
distance
- time the proportional controller

Desireble:
- perform a test run with unit step input
- Measure and log the speed with time 
stamps
- Log reference values with time stamps
- Compare, visualize and calculate the 
key values

4 Computing unit

Shall meet: 
- requirement list for running ubuntu
- 10 GPIO pins
- 1 usb port
- 1 hdmi port
- 120 GB hardrive
- standard ethernet port

Including minimum specification, 
shall also meet: 
- multiple usb 3.0 ports
- ethernet 100 Mbit/s
- 30 GPIO pins
- Can run multithread

- Checking technical specification of 
possible computing units

5 E/E Architecture 
and modularity 

Shall meet:
- one central comuting unit for highlevel control
- one hardware interfacing ECU
- Follows mostly the standards
- Response time ECU <-> Central, less than 500 ms
- ECU update frequency should not be lower than 20 Hz
- while integrating new ECUs, older ones should still be 
compatible without needing updates (SW and HW)

Including the minimum specification, 
it should also meet:
- ECU update frequency should not be 
lower than 100 Hz
- Multiple ECUs integrated
- Response time ECU <-> 10 ms
- Guides and instructions on how to 
implement future functionalities

- Use timers in programs
- Standards

6 Transportation Rig / 
Lift aid

Shall meet:
- The physical limits of the gokart

- Test equipment on gokart and see 
possible tensions/ fracture points

7 Usability / Unit 
Tests

Shall meet:
- Automatic startup when powers on
- When error occured, give user information of where and 
why it occured. In each ECU and central computer
- Documentation on how each ECUs HW/SW is 
constructed and how to modify
 

- Automatic scripts and prints error

8 (SW) Digital Twin

Shall meet: 
- Use of SW development tools that can include simulation 
of physical dynamics and controls  

Including the minimum specification, 
it shall also meet: 
- should include all sensors and 
actuators that is used
- sensors measuring variation should not 
differ more than 10% from the actual HW
- Digital Twin having same control 
highlevel algorithms 

- Log data and sensor input from HW
- Use sensor inputs in digital twin
- Compare the differences

9 (SW) Modular 
Software for Control

Shall meet: 
- Is the SW control designed in such a way that velocity 
and steering can be set without any updates on the low 
level SW and communication tools. 
- Possible to access the state of AP4 and its readings from 
sensors

- Create a very simple high level 
control, only affecting the mentioned 
high level SW

10 Safety 
- -

11 Sensors in AP4 (HW 
and SW)

Shall meet:
- A list of the most common used sensors in AD and ADAS
- Meet the reasonable physical/ scale limitation of AP4

- Litterature study investigation of what 
sensors are most commonly used in the 
automotive industry

12 Budget
Shall meet: 
- total cost up to 30 000 sek

- Budgethandling in excel

4. System Requirements, Specification and Verification

4.1.2 Specification of AP4
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5
Hardware Platform Design

This chapter aims to describe how the autonomous platform system is designed and
constructed hardware-wise in order to satisfy the requirement specification list. The
chapter is structured to be top-down, meaning that in section 5.1 consists of an
overall system description. section 5.2describes the functions and features of the
general ECU base, which enables a modular base and choices regarding standard
outlets. Further, a detailed illustration and description of each component used
in the implemented ECUs and in the Central Master Computer is in section 5.3.
In section 5.4 it is described how the modular design was accomplished and what
standards have been brought into AP4. Lastly, section 5.5 touches upon the power
supply for AP4.

5.1 System overview

The developed centralized E/E architecture of the autonomous platform is illus-
trated in figure 5.1, influenced by the requirements in section 4.1.1 and the generic
description of a centralized E/E architecture, figure 2.2. Down below follows a de-
scription of each component of the centralized E/E architecture. Each ECU follows
a generic structure described in 5.2. The Software of each component is described
in chapter 6.
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Figure 5.1: E/E Architecture of Autonomous Platform 4th generation. This
schematic view illustrates what components should be integrated into the system
and how they should be connected. As of this thesis, only the SPCU, Camera,

Connectivity and battery management system are implemented.

The central master computer contains the high-level computation algorithms. The
computer supports a direct interface of GPIO pins in order to communicate with
the other ECUs through CAN. Furthermore, it also consists of USB and ethernet
ports for dataflows requiring higher baud rates than CAN can support. More details
of the chosen hardware components can be found in section 5.3.1.

The Steering and Propulsion Unit (SPCU) controls the steering and propulsion of
the go-kart. This includes a DC motor with encoding and a motor driver module for
the steering and two digital-to-analog converter (DAC) circuit boards for controlling
the propulsion. More details of the chosen hardware components can be found in
section 5.3.2.

The Ultrasonic and Radar Unit (URCU) contains sensors such as ultrasound sensors
and radar, to enable localization and higher levels of AD algorithms. The selection
of sensors is based on commonly used sensors in the automotive industry, which
is further described in section 2.2.2. This ECU is not implemented due to time
restrictions.

The Battery Management System Unit (BMS) controls the power management,
this includes current and voltage readings of the battery module and actuators for
switches. This enables the possibility to implement power optimization and state-
of-charge estimations. This ECU is not implemented due to the time restrictions.
However, the electric circuits and descriptions of the power module can be found in
section 5.5.

The Inertial Measurement Unit (IMCU) contains sensors such as an accelerometer
and a gyroscope, thus enabling the possibility of developing filters for estimations of
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the platform’s orientation and movement. Therefore, it is a necessary functionality
that enables higher functionalities in an autonomous vehicle, such as AD and ADAS.
State estimation of the vehicle is a crucial part of autonomous vehicles, it enables
the vehicle to gain information about its location and orientation. This ECU is not
implemented due to time restrictions.

The Telemetric and Infotainment Unit (TICU) includes user interfaces such as touch-
pads, monitors, and buttons. This ECU is not implemented due to time restric-
tions.

Camera and LiDAR sensors are essential when developing AD algorithms. These
sensors are directly interfacing with the central master computer unit since the data
feed from these sensors will overload the CAN bus (1 Mbit/s). USB 3.0 can easily
support up to 5 Gbit/s, thereby ensuring video feeds and point clouds. A front-facing
view camera Logitech c920 is directly connected to the central master computer.
However, a LiDAR is not yet implemented.

The Connectivity Unit (CONCU) will ensure wireless interfacing with the AP4,
enabling over-the-air updates and remote control. It also allows for technology
using cloud computing. The chosen methodology to ensure connectivity is the use
of wifi.

5.2 Generic ECU base

Having a generic ECU base, see figure 5.2, for all nodes of the centralized E/E ar-
chitecture will make the development of new ECUs simpler. Because the only new
implementation needed will be the actual sensor module, whilst the base fulfills the
requirements for power supply and communication. The base will provide power
supply in the most common voltage ranges, and interface with sensors and actu-
ators through GPIO pins. Furthermore, each base will be provided with a CAN
transceiver and controller. Serial communication is used to flash the processor with
new instructions. The serial port can also be used for debugging.
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Figure 5.2: Illustration of the features and components inside each generic ECU
base. Communication is handled with a CAN controller and receiver, Power is

supplied by two DC-DC converters and a processor which handles computations
and can interface with hardware using GPIO pins.

The chosen hardware is described below for each functionality in the generic ECU
base in figure 5.2.

• Processor, debug interface and GPIO pins: Having a microcontroller
will enable all wanted features. The chosen microcontroller is the STM32-
F103C8T6 also called Bluepill. The microcontroller is cheap, small in size,
and high-performing, having a clock speed of 72 MHz. It supports the most
common communication protocols through its 37 GPIO pins. However, it
has a relatively limited memory space with 128 KB of flash memory and 20
KB SRAM. The Bluepill is supported in Platformio and the use of Arduino
framework, making the development of software easier. There are multiple
other possible microcontrollers that could be used, such as the popular Arduino
boards, but the selection of Bluepills is based on the better specification and
that the previous generation used the same board.

• DC-DC Converter: The chosen converter is LM2596, which supports sev-
eral voltage ranges through a simple turn of a screw, which makes it very
user-friendly. The input voltage can vary between 4.5 V to 35 V and the cor-
responding output voltage can vary between 1.2 V to 40 V. Furthermore, it
can supply up to 2 Amperes, thus it is far enough to supply the ECU and
corresponding modules. Moreover, there is also a fuse in the power supply
port to ensure that the ECU is not overloaded.

• CAN controller and transceiver: The MCP2515 CAN-bus module and
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transceiver TJA1050 correspond to the controller and transceiver that can in-
teract with the microcontroller through SPI communication. The selection
criteria include usability since there exist many different libraries for the mod-
ule. However, the Bluepill’s logic level is 3.3 V whilst the can-buss module’s
SPI communication is at 5 V, a logic level converter is needed (BOB-12009
circuit).

• Cooling fan: In each generic ECU base, there is also a 12 V PC fan in-
stalled, 40x40 mm. It enables cooling of the components in order to lower the
possibility of thermal damage and overheating.

5.3 Implemented ECUs

The physically implemented ECUs are described in the following sections. This
includes the selection of sensors and actuators, and how they interface with the
generic ECU base, described in section 5.2.

5.3.1 Central master computer & connectivity

The central master computer consists of two units, the first being the hardware
interfacing (HWI) computing unit and the other called the general purpose high-
performance computing unit (HPC), the central master computer is visualized in
Figure 5.3. The reason behind having two units is that most common off-the-shelf
PCs and laptops do not support a GPIO interface. The HWI is a Raspberry Pi 4b
that is used to interface with the ECUs through CAN and additional sensors directly
through USB ports. The CAN communication is enabled through the RS485 CAN
HAT that is developed for Raspberry Pis. The HPC unit can vary quite a lot and
has not been decided on strictly, the only limitations being that the unit supports
Linux Ubuntu and docker. The HPC can be a simple laptop or any other high
performing computer, for example an Intel NUC PC.
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Figure 5.3: Illustration of how the internal interface of the central master
computer and the connectivity capability. The physical communication between
high-level software and low-level software is Ethernet. The low-level software is

connected to the rest of the system using a CAN controller and transceiver. USB
hardware can be accessed by physical ports on the low-level hardware.

The interface between the two units is over a router. The router supports wire-
less connection over wifi, which enables remote connection to AP4. The remote
connection could also be used for monitoring or even cloud computing.

5.3.2 SPCU

The SPCU is based on the generic ECU base described in section 5.2. The SPCU
consists of two modules, the steering module, and the propulsion module. The
SPCU is shown in Figure 5.4.
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Figure 5.4: Circuit diagram for the Speed and Propulsion ECU and how
components are wired. The generic ECU interfaces with the steering using Serial

Communication. To control the propulsion, the ECU base is connected to two
MCP4725 boards which in turn send analog voltages to the throttle and brake

pedals.

The steering mechanics is the same as in the Generation 3 version of the platform.
The steering mechanics is controlled by a motor drive module Sabeerthooth dual
2x25A/6-24V motor driver and motor control module Sabertooth Kangaroo x2. The
steering can be controlled using serial communication.

Based on the analysis of the go-kart pedal functionality, described in subsection 3.2.2.
The pedals will output an analog voltage that is linearly proportional to the posi-
tion. A voltage source could thereby act as a pedal by sending out an analog voltage
signal with the same characteristics as the real pedal. An analog signal can be gen-
erated by a MCP4725 module that is connected to a microcontroller. By wiring
the pedal and the MCP4725 in parallell it enables them to act independently of ea-
chother. Meaning that go-kart pedals will still be usable when the microcontroller
is connected. This for example, allows an operator riding in the go-kart to brake
manually if necessary.
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5.4 Modular hardware design

To enable modularity and flexibility of hardware placement, a modular design based
on an aluminum sheet with a rectangular pattern with holes, as illustrated in Fig-
ure 5.5, is used. The dimension of the aluminum sheet is 500mm long, width of 250
mm, and a thickness of 1.5 mm. The hole pattern has holes of 4 mm in diameter
and is evenly distributed in a rectangular pattern of 15 mm between each hole. This
hole pattern is set as a standard for the complete AP4.

Figure 5.5: Visualisation of modularity on AP4. Illustrating the aluminum plate
and how modular designed casings could be mounted in different configurations

enabling a flexible physical layout of the system.

The ECU casing is designed to align with the aluminum plate’s hole pattern making
it possible to mount the casings arbitrarily on the plate, see Figure 5.5. Furthermore,
each casing for all hardware also has the same pattern on the sides and on top, in
order to increase the flexibility placement of other modules as well. Moreover, the
use of established standardized outlets such as xt60 for power supply, makes the
complete system more standardized and it also increases flexibility. For the CAN
protocol, a DB9 cable female-female is used and all CAN transceivers are connected
through male outlets. The generic ECU casing can be seen in Figure 5.6. The yellow
outlet is the xt60 and the grey outlets are DB9 outlets. Furthermore, there is an
opening in the back panel to enable the use of GPIO pins on the Bluepill.
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(a) Generic ECU casing without top,
showing the physical layout of circuit
boards and components. The circuit

boards functionality and actual
hardware are described in section 5.2

(b) Generic ECU casing with the top
plate mounted. There is a hole in the

top where a fan is mounted.

Figure 5.6: Rendered illustration of the generic ECU. Highlighting how
components are mounted within and how it interfaces with the rest of the system.

The other casings for example the central master computer, front wings, and mount-
ing plate holders have been designed in the same way. That is, to utilize the stan-
dardized hole pattern and the use of standardized outlets and cables. Rendered
figures of other casings and mounting fixtures can be found in Appendix B.
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5.5 Power module

5.5.1 Power consumption

The power consumption of the implemented AP4’s hardware has been calculated in
Table 5.1. The values have been derived from each component’s product manual.
The values are based on the nominal values in order to define overall power con-
sumption. Some components have been neglected such as the losses in cables, wires,
and switches. The power calculation follows the well-known electrical direct current
power formula:

P = U · I [W ] (5.1)

where U is the voltage and I is the current.

Table 5.1: Power Consumption of AP4 summarized. The voltage and current
consumption of the major components on AP4 are noted down and converted into

a power consumption value.

Component Voltage [V] Current [A] Quantity Power [W]
Raspberry Pi 4b 5 1.01 1 5.1
DC-Motor EMG49 24 2.1 1 50.4
Cooling Fan 12 0,095 2 2.28
Bluepill 5 0.035 1 0.175
MCP2515, CAN module 5 0,05 1 0,25
MCP4725, DAC 5 0,05 2 0,05
Router 12 1 1 12
Camera, Logitech c920 5 0.5 1 2.5

Total Power Consumption: 73.2

5.5.2 Components

The power module consists of three components, a battery, a battery charger, and
a power supply unit (PSU). There is a user interface including a power switch,
emergency killswitch, and outlets that select which power source should be used
for the autonomous platform. Also, there are voltage- and current measurement
units mounted, but they are not implemented in software or physically connected
to an ECU. The complete electrical circuit of the power module can be found in
Appendix A and a rendered illustration of the CAD files for the power module can
be seen in Figure 5.7.
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Figure 5.7: Rendered illustration of the Power module. The main component is
the battery holder (red) to which the remaining components are mounted to. The
battery holder holds the lead acid battery. The battery charger (yellow) is mounted
onto the side. A PSU module (green) is mounted to the side. The power module

interface (green) is mounted on top of the battery holder, providing an interface to
the power module. An emergency stop, on switch and power connectors.

5.5.3 Battery and charger

The battery for the go-kart is a 12 V lead acid battery. The battery is typically used
for lawnmowers and similar machines. The corresponding battery charger selection
is based on compatibility with the battery. The battery capacity is 30 Ah and
weighs about 8kg. From the derived system power consumption found inTable 5.1,
the theoretically run-time of the system can be determined:

trun = 12 · 30
73.2 ≈ 4.9 [h] (5.2)

5.5.4 Power supply unit

To enable testing of higher levels of algorithms without the movement and unnec-
essary use of the battery that will shorten its lifespan, a power supply unit (PSU)
connected to the electrical grid is used.
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5.5.5 User interface
The user interface includes three different outlets in order to select which power
source should be used. These outlets are called, Battery out, Power in, AP4 out.
Battery out is directly connected to the battery terminals, with the killswitch in
series. The schematic of the power module can be seen in Figure 5.8. The electrical
circuit for the user interface and connected sensors is located in Appendix A. For
example, the PSU could power the platform whilst the battery is charged at the
same time.

Figure 5.8: Illustration of the power module top interface. Showing the three
different power connectors, AP4 OUT, POWER IN and BATTERY OUT. The
Emergency killswitch and power switch is also illustrated. The PSU and battery

charger and their respective power connector is shown in the bottom om the figure.
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6
Software Design of Next

Generation Autonomous Platform

This chapter aims to describe the software architecture and functionality of au-
tonomous platform generation 4. The software will be described top down, starting
with the purpose of the software architecture. Next, the three different software lay-
ers that have been implemented in this thesis are described. Then moving through
the different software layers, describing functionality and structure.

6.1 Software design overview
In order to enable autonomous driving there are many different software components
that need to interact. Some processes and hardware interfacing code are time-
critical. Therefore, to separate software functions that are time-critical in different
aspects, the software architecture of the autonomous platform is split into three
separate components, a high-level control software component, a low-level hardware
interfacing component, and an embedded system software component. This can be
seen in Figure 6.1.

By splitting the software into three separate parts, the probability of being held
up by another software component unit will be less likely. This still places a high
demand on time criticality on software closer to the hardware, but the risk of being
held up decreases. The embedded software works in time chunks measured in micro-
or milliseconds whilst higher-level control software can be allowed to process data
and take up computing resources for several seconds. It is therefore reasonable to
implement algorithms that may take a longer time to execute on high-level software.
Furthermore, the choice of splitting up the software into these three parts also allows
one to choose a suitable programming language for each task and also onto separate
hardware. Higher-level control algorithms can be implemented using Python and
take advantage of numerous libraries available. Python is not the best choice when
requiring fast execution time, but is very suitable to design advanced algorithms
in an easy way. At the same time, lower-level software that is very time-critical
can be implemented using C or C++. It also allows for the different software com-
partments to be configured individually. For example, enabling a real-time kernel
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on the operating system responsible for one software block. For the autonomous
platform, a more detailed view of the software blocks and their underlying software
dependencies can be seen in Figure 6.1. The following sections will describe how
each software block is designed in detail.

Figure 6.1: Software architecture components, illustrating the relationship
between the high-level software, low-level software and lastly the embedded

software. Each software is implemented on a separate hardware unit, ranging from
HPC down to a simple microcontroller.

6.2 Linking of software layers

This section aims to describe how the three different software layers are communi-
cating.

6.2.1 High-level to low-level software link

The high-level and low-level software components are linked together using an Eth-
ernet interface, as illustrated in Figure 6.2. Software-wise, this makes the connection
between high and low-level software very robust and easy to use. The software com-
ponents can be connected together as long as they are located on the same network.
By configuring a ROS environment variable, ROS_DOMAIN_ID, the underlying
communication middleware, DDS, will ensure that all software running in any loca-
tion on the network can communicate with one another using the ROS2 API. This
also means that the connection between high-level and low-level software can be
done wirelessly over wifi, and is not limited to Ethernet.
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Figure 6.2: Overview of software layers communication inside the HPC unit and
respectively HWI unit which runs a docker container on its operative system on
Ubuntu. These two software components communicate using Ethernet and pass

the ethernet interface to each container. The ROS2 software uses DDS
communication which interfaces with the Ethernet to allow software in the HWI

unit to communicate with software in the HPC unit.

6.2.2 Low-level to embedded software link

A major component in the low-level software is the interface between ROS2 and the
embedded software. This component can be seen in Figure 6.6 Hardware-wise it
uses a CAN bus network, as explained in section 5.2. The low-level software and
embedded software need to communicate seamlessly and without any overhead or
disturbances to make the system as robust as possible.

A detailed illustration of how the low-level SW and embedded SW communicate can
be seen in Figure 6.3. The hardware components are described in subsection 5.3.1,
software-wise, a Linux socketCAN is created which interfaces with the hardware.
Any CAN messages received from the embedded SW will be put on the Linux socket
CAN interface. This interface is then exposed to the container containing the low-
level SW. Therefore, CAN messages received or sent on the socket CAN interface
will be relayed to the hardware components on the central computer. CAN frames
are encoded and decoded using a unified library, CAN_DB, to ensure that the two
different software components are fully compatible and send data in exactly the
same format.
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Figure 6.3: Common CAN database for each component within the AP4 system.
Used for both the low-level and embedded software in the ECUs. In order to

encode and decode each CAN message according to a set standard.

An external library is used to generate the unified CAN database, CAN_DB, into C
code. It turns the CAN frames defined inside a CAN database file (dbc) into objects
and structures that can be accessed programmatically. The CAN database can be
found in Appendix D. The C code also provides an easy interface API for encoding
and decoding CAN frame data. Every time the dbc-file is changed, the accessible
structures and objects in the code will be changed. It also makes the CAN frame
database very scalable, since any new code representing frames and or signals will
be generated according to the standard specified by the dbc to C converter library.
The workflow is illustrated in Figure 6.4.
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Figure 6.4: Conversion from CAN database to C code schematic flow is
illustrated. The dbc file can be changed manually to add CAN frames and signals
to the software. The DBC to C external library can be run by a developer when
the dbc file has been changed to generate new C files with a specified structure

containing every CAN frame and signal.

The CAN_DB.c and CAN_DB.h is generic C code and will therefore be the base on
which software specific to AP4 can be built. From this base, SW specific to the local
level and embedded level can be written to utilize the generated CAN_DB program-
ming structures. These two components are CAN_AP4 and can_to_ros2_topic_converter,
the dependency can be seen in Figure 6.3. By being based on the same base code,
CAN frames can be encoded and decoded using the same method.

6.3 High level software design

The high-level software block is designed to be hardware agnostic and function
regardless of what algorithms and hardware exist on the lower-level software blocks.
This abstraction makes the high-level system very modular and compartmentalized.
This is done by using the ROS2 convention of naming and manipulating data. By
using the ROS2 frameworks API, the software can be created in a modular way. An
overview of the high-level software functionality can be seen in Figure 6.5.

The developed higher-level software consists of two software functionalities, au-
tonomous driving and a digital twin.
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Figure 6.5: Overview of High-Level Software where the Gazebo simulator and
the vehicle control are actually implemented. However, the overall structure should

follow this to enable a structured way of working in AD systems, described in
subsection 2.2.1.

6.3.1 High-level control algorithms
The high-level software is expected to match the capability of autonomous driving
functions used in modern vehicles of today and tomorrow. To accomplish hard-
ware agnostics, the input to high-level software algorithms will come in the form
of sensor data on ROS2 topics which follow the ROS2 convention of describing the
vehicle state, sensor states, and such. This transformation of sensor data into ROS2
standardized topics is further described in the low-level software section 6.4.

As described in subsection 2.2.1, AD and ADAS software often consist of several
functions connected together, this is visualized in Figure 6.5. Therefore it is impor-
tant that high-level software can accommodate these functionalities. By using ROS2
there is the possibility to write software in Python or C++ which can be decided
by the developer, the output from these algorithms can use the standardization
of the ROS2 API to make different software components written in different pro-
gramming languages compatible. As for testing and developing new AD functions,
utilizing Python and its readily available libraries is advantageous. By creating a
software bridge to the ROS2 network it is possible to connect existing AD/ADAS
functionalities developed outside the ROS2 framework.

6.3.2 Digital twin
The digital twin functionality is implemented in the high-level software system. The
digital twin is described in detail in section 7.4. Placing the digital twin in the high-
level software block has several advantages. Firstly, the control and sensor interface
between the simulation and control software can use generic standardized ROS2
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formats. Meaning the high-level control functions can be switched from sending its
commands to the low-level software components and instead send the commands
to the digital twin. Secondly, since this software layer is placed inside a docker
container, the high-level control functions can be tested on the digital twin on a
separate host computer not connected to the physical platform, seamlessly.

6.4 Low-level software design
The low-level software block is supposed to be the interface that connects the high-
level control algorithms and the embedded software blocks. It is also responsible for
taking in sensor data from the autonomous platform and converting it into a suitable
format that the high-level control algorithms then can use. The software developed
is designed to be hardware-specific and is therefore not supposed to be portable,
i.e., the software should always run on a device that is connected is mounted on
the platform. The low-level software block has four major components as shown
in Figure 6.6. The components are CAN translation, vehicle control, and joystick
manual control.

Figure 6.6: Overview of Low-level Software implemented on the HWI unit. It
consists of several ROS packages including vehicle control, joystick manual control,

CAN translation, and bridge to the high-level software unit.

6.4.1 CAN translation
An interface to convert CAN bus message data into ROS2 topics has been developed
for AP4, as mentioned earlier. The low-level SW contains a software module called
CAN Signals To ROS2 Topic Converter, see Figure 6.6. This software module
is built on two ROS2 packages, a native ROS2 package called ROS2_socketcan
and a custom-made package called CAN_signal_to_ros2_topic, as illustrated in
Figure 6.7. The ROS2_socketcan package starts two ROS2 nodes, can_sender and
can_reciver, which interfaces with the Linux socket CAN interface, which enables
them to receive or send CAN frames from the CAN bus.
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Figure 6.7: ROS package to convert topics to CAN frames and vice versa, that
consist of three different nodes and the auto-generated c files described in

subsection 6.2.2 to encode and decode CAN frames. ROS2_socketcan package
interfaces with the CANhat mounted in raspberry pi to enable CAN

communication.

The CAN_signal_to_ros2_topic package exposes individual CAN frame signals
onto distinct ROS2 topics. It allows CAN frame signals to either be read or writ-
ten from the ROS2 topic API. A detailed view of this ROS2 node can be seen
in Figure 6.8. On a high level, it receives CAN frame data coming from the
ROS2_socketcan node can_reciever. It then decodes the CAN frame and splits
it into its signals which are then published on separate topics. One topic for each
CAN signal. In the same way, it listens to signal topics in order to set signal val-
ues for a specific frame. Once a new signal value has been received, it encodes the
signal values into a CAN frame and publishes them onto a ROS2 topic which will
be received by the ROS2_socketcan node can_sender. This will in turn publish
the frame containing the specific signal onto the CAN bus network. The CAN_DB
code is used to decode and encode the CAN frame signals in the same manner as the
embedded SW, making them compatible. The translator node is a highly scalable
solution and builds upon the common interfaces in CAN_DB, meaning it can be
modified to process more CAN frames and signals as the CAN database file grows.
It also provides a layer of abstraction for any higher-level algorithms that need to
communicate with the embedded SW.
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Figure 6.8: Flowchart of the ROS2 Node CAN signal to ROS2 topic which can
be seen in the Figure 6.7. That translates CAN objects into ROS topics as well as

building CAN frames from ROS topics.

Vehicle control

The vehicle control software algorithms ensure that requested vehicle velocity com-
mands are processed and converted into signals that are sent to the vehicle control
actuators in the embedded software block. There are two attributes to control,
velocity and steering rate. The higher-level software components can request a mo-
tion velocity and turning rate by sending a Twist-type message on the ROS2 topic
/cmd_vel. This message contains six relevant fields, velocity in m

s
in x, y and z and

turning rate in rad
s

around each axis, Rx, Ry and Rz.

Relative to the autonomous platform frame of view, it can only move longitudi-
nally forward or backward and change its turning rate. Therefore only the linear
x component and angular z components from the /cmd_vel topic can be used to
command the platform, this is visualized in Figure 6.9. The longitudinal velocity
can be changed by controlling the propulsion actuators and the turning rate can be
changed by controlling the steering angle.

An open loop controller converts the velocity inputs from high-level control to a
voltage that is applied to the pedal actuators. An additional open loop controller
is used to convert steering angles into corresponding encoder values for the DC
motor. Essentially, the controllers are open-loop control systems, simply scaling to
the correct units and limiting the output values according to the capabilities of the
actuators. These controllers are illustrated in Figure 6.10.
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Figure 6.9: Kinematics of AP4, illustrating the relationship between the base
frame’s origo, velocity direction and steering angle. The complete description of

the kinematics with actual transposes and transformations is described in an
URDF-file.
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Figure 6.10: Vehicle Open Loop Controller, consisting of three proportional
gains, mapping control inputs to valid values for the steering angle, and voltage for

brake pedal and throttle respectively.

Steering angle controller gain
The steering hardware has an internal controller, therefore it is sufficient to control
the requested steering angle actuator command using an open loop with a propor-
tional gain. The steering angle domain of the physical steering system of AP4 is
between -40 degrees and 40 degrees. However, the input to the vehicle controller
is of type /cmd_vel where the turning rate RZ around the z-axis will be used and
converted to degrees. Assuming a linear relationship between the turning rate and
the string angle:

δsteer = ksteer · Rz [degree] (6.1)

As the turn rate Rz is limited to [-0.4,0.4], whilst the steering angle is limited to
[-40,40], ksteer can computed as

ksteer = MAX(δsteer)
MAX(Rz) = 100

[
degree
rad/s

]
(6.2)

A safety margin is included to not meet the limit points and potentially damage the
equipment, so ksteer is chosen to 90.
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Velocity controller gain

The embedded SPCU software actuates the propulsion on the platform, as described
in subsection 3.2.2, and the measured voltage applied to the brake and throttle
pedals is between 820 and 4350 mV which can be seen in Table 3.3. Therefore the
gain of the velocity open loop control system needs to convert a desired velocity v
in m/s as input from the /cmd_vel to a voltage magnitude Uout.The control system
can be seen in Figure 6.10 and the schematic of actuators can be seen in Figure 5.4,
the general formula for controlling the pedal voltage is formulated as:

Uout = Uoffset + K · v [mV] 820 ≤ Uout ≤ 4350 [mV] (6.3)

where v is the velocity reference as an output from the cmd_vel ROS topic, and
K is the velocity controller gain. Furthermore. the offset Uoffset is set to be a
constant with the value of 820 mV. Because that is the measured idle voltage when
the go-kart’s pedals are not pressed. Assuming a linear relationship between applied
voltage to the throttle pedal and actuated velocity, a simple proportional gain can be
implemented to convert the velocity in m s to voltage V. Just like in the calculation
of the steering control system gain, the calculation is based on the limits of the
actuator. The velocity range for the go-kart is between 0 and 2.2 m s, which results
in:

Kacc = 4.350 − 0.820
2.2 − 0 = 3.530

2.2 = 1.6
[

V

m/s

]
(6.4)

Kbrake = −3.530
2.2 = −1.6

[
V

m/s

]
(6.5)

To engage reverse on the platform there has to be a discrete transition, by engaging
the brake pedal two times in a short time period. When the go-kart is in reverse
mode, reverse velocity is controlled by the throttle voltage. This makes the reversing
act just like in a real car, by engaging the reverse gear and controlling the velocity
through the car’s pedals.

Joystick manual control

The joystick control functionality utilizes two standard ROS2 packages, joy and
teleop-twist-joystick. The first package takes a joystick input on the host computer
and turns it into data available on a ROS2 topic. Secondly, teleop-twist-joy takes this
data and converts it into the desired velocity published on a ROS2 topic according
to a set standard. The teleop-twist-joy node can be configured to output the desired
speed and turning rate within certain limits.
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Figure 6.11: ROS package for joystick manual control consisting of two nodes,
Joy_node which interacts with device inputs and publishes as topic /joy. Then

Telop twist joy converts it into ROS convention of the datatype Twist in /cm_val.

6.4.2 Real-time capabilities in software
Having dedicated software responsible for interfacing with hardware and running
fast control loops ensures that the hardware interfaces will not be kept waiting by
higher-level control. The underlying framework, ROS2, has been proven to satisfy
soft real-time capabilities in [51]. The docker container in which the framework
runs and the underlying Linux kernel can be configured to be able to run real-time
applications. Therefore low-level software can be considered to be real-time capable
if the underlying software is configured correctly.

6.5 Embedded software design overview
Every embedded software block is designed according to a predefined structure, as
seen in Figure 6.12. This structure is designed to be modular and expandable for
future functionality. It consists of a software bridge to the low-level software, built on
CAN bus protocols. A CAN bus device library interfaces with the CAN bus device.
A custom CAN bus interface, AP4_CAN, has been developed to interface between
the low-level and embedded software as seamlessly as possible. The packaging of
individual can frames is abstracted into calling functions to retrieve and send data.
The custom library can be configured to periodically send important data over the
CAN bus interface. The embedded software contains a generic code section that
can be adjusted for all scenarios where one would need to convert data on the CAN
interface to control actuators or pass sensor data through. This code can be adjusted
to run any code that could be run on a microcontroller software platform. Further
libraries, specific for the sensors and actuators used, can then be integrated into the
embedded software stack which interacts with the embedded hardware.

Making the embedded software blocks as generic as possible allows for adding sev-
eral embedded software units according to a designed software standard. It also
ensures that future embedded software can be compatible with existing embedded
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software. This is made possible by abstracting the CAN interface into a dedicated
can interface library. Each embedded software can still be configured around this
pre-defined structure, in order to connect any new external sensor or actuator, by
simply appending a relevant library onto the embedded software stack.

Figure 6.12: Embedded software template functionalities for the generic ECU
base, including libraries to encode, and decode CAN frames.

6.5.1 Implemented embedded software

The SPCU has been designed and implemented as an embedded software component.
The software in this ECU is responsible for receiving commands from the low-level
software block and controlling the desired actuators, an illustration of the software
functionalities and building blocks can be seen in Figure 6.13. It also sends back
the measured steering angle at a rate of 10 Hz. Another functionality is that the
software can respond to a heartbeat request, meaning if a heartbeat request has
been sent over the can bus the SPCU will respond and notify that it is still working
as expected. If any error occurs during runtime, this will be sent as a frame onto
the can bus. An in-depth description of the software and how it works is illustrated
as a flowchart in Figure 6.14
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Figure 6.13: Embedded software in SPCU including the general code from the
generic ECU base template code and special libraries to interface with steering and

propulsion modules.
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Figure 6.14: SPCU logic flowchart describing initialization of variables, set up of
communication protocols, CAN frame handling, error handling, and how the

SPCU interface with the actuators.
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Results

The results chapter will serve the purpose of showing the results from the verification,
highlighting the autonomous platform key features, and describing the digital twin
functionality.

7.1 Verification results
The methodology used to verify each specification on the autonomous platform is
summarized in chapter 4. This chapter will present the specifications, verification
methodology and results of the verification. This is done for every function in the
specification list.

BMS and power management system
Specifications are as follows:

• Supplies 12 V ± 0.5 V to system continuously

• Voltage does not drop more than 0.5V during load

• Autonomous platform should be able to run for one hour continuously without
being connected to a wall outlet

Verification is done by:

• Measuring voltages in the system using a multimeter

• Timing the runtime during tests

Result: The BMS and power management system was run for half a day with
mixed usage, i.e. being driven with a controller and varying different aspects of
the platform. Below idle is defined as the platform being stationary with all ECUs
being powered up, no load as driving the go-kart around without a person sitting
in it and load as driving around with a human operator in the seat.
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Table 7.1: Platform battery voltage measured at the start and end of the testing
session. The session lasted five hours and tested the capabilities of the platform.
Utilizing all mounted components, including SPCU hardware node, Raspberry Pi 4,
wifi router, and steering motor.

Start End
Boot down (Voltage) 12.92 12.62

Boot up (Voltage) 12.62 12.19

Table 7.2: Voltage readings of power supply for the platform during different loads.
No load is without moving the steering and with load is whilst moving the steering
motor between maximum and minimum limits.

Idle No Load Load
Voltage of system 12.62 12.01 11.2

As can be seen in Table 7.2, the voltage drop during usage drops below the specified
voltage during load. Therefore it does not meet the specification of being less than
0.5 V. The voltage measurements were conducted using a multimeter Fluke 115.
Furthermore, the run-time specification is also met with mixed driving during 5
hours, approximately using 60% of the time resulting in a continuous run-time of 3
hours corresponding well to the theoretically calculated value of 4.9 hours.

On top of the minimum requirements, a crucial aspect of the desirable requirements
for the power management system was measured. The continuous current consump-
tion was monitored during different load scenarios, to validate that the system could
provide enough amperage according to the desirable specification. That states that
the system could feed 10 A continuously. The current was measured using a cur-
rent clamp Fluke 365, clamped around the battery positive out cable. The platform
was placed on a go-kart track surface whilst performing the tests. Note, that even
though the current was measured to be 6.5 amps, the battery fuse of 15 amps blew
during the load test. The Ninebot segway propulsion unit had 78% state of charge
at the end of the test session. Due to the voltage dropping below the specification
during load, the platform does not meet the requirements.

Table 7.3: Platform current consumption measured at the start of the testing
session. Utilizing all mounted components, SPCU hardware node, Raspberry Pi
4, wifi router, and steering motor. Idle means no movement of the platform, load
means moving the steering motor between its maximum and minimum limits, and
load is with a person sitting on the platform.

Idle No load With load
Current Consumption [Ampere] 0.65 2.4 6.5
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Steering control
Specifications are as follows:

• Possibility to manually calibrate steering angles

• Measured steering angle should be within 20% of the set steering angle

Verification is done by:

• Measuring steering angle of the platform

• Optically see how the steering limits change after manual calibration

Result: The steering limits could be set by tuning the motor driver that is mounted
to the steering shaft. After tuning, the maximum and minimum limits were observed
to change.

The turn radius was measured by moving setting the steering angles to their max-
imum steering limits and slowly driving forward until the platform had completed
half a circle. The diameter of this circle was then measured. This was repeated
three times. This was done on a go-kart track surface. The steering radius while
turning to the left was 3.2 meters and 4.1 meters when turning to the right. The
requested steering angle versus the actual steering angle was measured by requesting
a steering angle in software and measuring the set angle on the hardware. This was
done using a protractor. The results from this can be seen in Table 7.4.

Table 7.4: Measured steering values of steering hardware with respect to requested
steering angles in software.

Reference (degree) -30 -15 0 15 30
Measurement (degree) -25 -10 3 10 25

Propulsion control
Specifications are as follows:

• In reverse mode, the internal go-kart system detects the state and starts beep-
ing

• When the throttle is increased, the relative velocity is positive

• When braking is increased the relative velocity goes toward zero

• At full bake, the braking distance should be lower than 6 meters.

• The delay between the HWI communication and the go-kart segway shall be
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less than 100 ms.

Verification is done by:

• Optically see how the platform moves according to the commands given.

• Manually measuring braking distance from maximum speed

Result: The propulsion control behavior was measured by connecting an external
joystick to the autonomous platform and performing the verification as set up in
section 4.1. The Segway which is responsible for propulsion was configured to be in
safe mode, limiting the velocity to 8 km/h. During the tests, the following behavior
was observed:

• While requesting a positive velocity, the platform moved forward

• The platform could enter reversing mode by applying the brake pedal twice
in quick succession. This is further explained in subsection 3.2.2. The segway
unit then started to beep.

• While in reverse mode and requesting a negative velocity, the platform moved
backward.

• The braking distance from maximum speed, without a driver, is on average
0.65 meters

• The braking distance, from maximum speed, with a driver, is on average 2
meters

The propulsion control, therefore, meets the specifications.

Computing unit
The computing mounted on the platform meets the specification in section 4.1. The
Raspberry Pi and the HPC are seen as one unit.

Table 7.5: Minimum specification of computing unit compared with chosen hard-
ware to see if it meets the stated specifications. In the table the chosen hardware is
a Raspberry Pi 4b.

Requirement Chosen HW Compliance
Can run Ubuntu? Yes Yes (Ubuntu 22.04) Yes
Nr GPIO pins 10 40 Yes
Nr USB ports 1 4 (2 USB 2.0, 2 USB 3.0) Yes
Nr HDMI ports 1 2 (Micro HDMI) Yes
Storage Capacity 120 GB 32 GB No
Ethernet port Yes Yes (1000 Mb/s) Yes
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The Raspberry Pi 4b uses micro-SD card storage, therefore the current storage
capacity does not meet the stated requirement. This storage can be upgraded in
size though. As mentioned earlier, the HPC will have the possibility to expand the
storage capacity of the central master computer and the combined computing units
will, therefore, meet the stated specifications.

E/E architecture and modularity

Specifications are as follows:

• One central computing unit for high-level control

• One hardware interfacing ECU

• Follows mostly the industry standards

• Response time ECU ↔ Central, less than 500 ms

• ECU update frequency not lower than 20 Hz.

• While integrating new ECUs, older ones should still be compatible without
needing updates (SW and HW)

Verification is done by:

• Measure time of the program in the SPCU

• Script to ping the response time of the pipeline, ECU ↔ Central Master Com-
puter

Result: As can be seen in the Table 7.6 the frequency and response time speci-
fications are met. One exception is when the SPCU reaches its maximum update
periodicity but the median of 3 ms. Furthermore, as described in chapter 5, the
characteristics of a centralized E/E architecture are achieved and as well as the
modularity of adding new physical components. The modularity of adding new
software is also met, which is described more in chapter 6.

Table 7.6: SPCU timer, measured periods and frequency for running the SPCU
code.

Function Max Median
SPCU update period [ms] 60 3
SCPU update frequency [Hz] 16.7 333.3
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Transportation rig / lift aid
In order to test the autonomous platform, it was moved to and from a test site, this
tested the portability of it. No dedicated rig to transport the autonomous platform
could be constructed in time. It could fit in a Volvo V90 trunk with two of the three
back seats folded down. There was also room left for test equipment. Therefore it
does not meet the requirement of having a dedicated transportation rig, even though
it is possible to transport the rig as it is now.

Usability / Unit Tests
Specifications are as follows:

• Automatic startup procedure when powers on

• When an error occurs, give the user information about where and why it
occurred. In each ECU and Central Master Computer

• Documentation on how each ECUs constructed hardware and software, how
to modify

Verification is done by

• Automatic scripts to detect errors and print

Result: As can be seen in Figure 6.14 error handling is implemented in embedded
software. Furthermore, a debug interface is enabled through serial communication
in the general ECU base which can be seen in section 5.2. The startup procedure
occurs both in the embedded software as well as in the central computer unit. The
documentation consists of internal documentation and descriptions in this thesis.

(SW) Modular software for control
Specifications are as follows:

• Is the SW control designed in such a way that velocity and steering can be set
without any updates on the low-level SW and communication tools?

• Is it possible to access the state of AP4 and its readings from sensors?

Verification is done by:

• Creating a very simple high-level control, only affecting the mentioned high-
level SW

Result: The software control of the autonomous vehicle can be considered to be
modular. It is designed in such a way that velocity and turning rate can be set on
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a high level without changing anything in the low-level code or embedded software.
The velocity and steering angle can be set by publishing commands on the cmd_vel
topic, which is a ROS convention on how to define these values. This can command
can come from any high-level software, it will be interpreted by the low-level software
in the same way. A detailed description of how this is done can be found in section 6.4
As a proof of concept for this modular control, a joystick is connected to the system
and sets requested velocity and steering angles. In the same way, sensory data can be
configured to be accessed from lower-level software algorithms using standardized
ROS conventions. The autonomous platform is therefore considered to meet the
specifications for Modular Software for Control.

Safety
The requirements are as follows

• All circuits should be dimensioned accordingly to the specifications of each
circuit board. Furthermore, a sufficient wire diameter shall be used according
to the current flowing through.

• Battery should be placed and used in a safe way by users

• Battery should have a kill switch connected to the emergency stop/manual
switch

• Go-kart shall have a designated fire extinguisher for electronic purpose

• Clear schematics of current carrying cables

• No open terminals

These are specified as hard requirements and will either be met or not.

Result: The circuits designed and implemented for the autonomous platform are
described in Figure A.2. These have been dimensioned accordingly to their power
consumption. As described in section 5.5, the battery is mounted in a sealed housing
and has a standardized power outlet. Therefore there are no open terminals carrying
current. It has an emergency stop button that will turn off every component on the
platform except for the segway used for propulsion. When the SPCU is turned off,
the segway will switch to listening to pedal inputs. Meaning if no throttle is applied
it will engage the motor to brake. While developing and testing the platform, a fire
extinguisher is close by. In summary, the requirements are met.

Sensors on autonomous platform (HW and SW)
Specifications are as follows:

• A list of most commonly used sensors in AD and ADAS
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• Meet the reasonable physical scale limitations of AP4

Verification is done by:

• Literature study

Result:
A list of the most common sensors used for autonomous drive and theory regarding
them can be found in subsection 2.2.2. Taking the size limitations into account it
would be possible to integrate some version of the onto the autonomous platform.
The only sensor which is integrated so far is the camera, which does fit onto the
autonomous platform. Therefore this function meets the stated specification.

Budget

Specifications is as follows:

• Total cost of upgrading the go-kart into an autonomous platform shall cost up
to 30 000 SEK

Verification is done by:

• Listing budget in an Excel sheet

Result:
The Bill of Materials (BOM) for the autonomous platform can be found in Ap-
pendix C. The BOM cost is well below 30000 SEK. Therefore the specification is
met.

7.2 Physical results on modular design

This section illustrates the physical autonomous platform built by showing pho-
tographs of the hardware, highlighting components developed in this thesis.

70



7. Results

(a) Front view on the
left side of AP4.

(b) Front right on the right side
of AP4.

Figure 7.1: Front view of Ap4 including laptop holder, front wing and an
overview of the complete system.

(a) Back view of AP4,
focusing on the HWI outlets.

(b) Back view of AP4, with
focus on the router and HWI

unit.

Figure 7.2: Back view of Ap4 including its components mounted such as HWI
and router.
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(a) Side view of power module with
PSU mounted on the side.

(b) View over power module’s
interface, killswitch- and power on

buttons.

Figure 7.3: Power Module and its corresponding user interface and modules to
power the AP4 with a PSU instead.

(a) View of the outports of the SPCU. (b) Top view of the SPCU, with the
steering module on top and the
propulsion module on its side.

Figure 7.4: The implemented SPCU and its corresponding module holders are
based on the generic ECU base.

72



7. Results

Figure 7.5: Steering system of AP4 which consist of a steering DC motor and the
tooth pulley system that is connected to the steering rods of the go-kart conversion

kit.

7.3 Images from test day session

This section illustrates pictures from the test day conducted to verify the require-
ments, comparing specifications with actual measurements and tests of AP4.
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Figure 7.6: AP4 around the track, AP4 is controlled through a handheld Xbox
controller, enabling drive-by-wire system. Complete a lap around the track on

Gokart Centralen, Kungälv.

Figure 7.7: Driving AP4 on a parking lot, when measuring the brake distance of
AP4, utilizing the known distance of each parking spot.
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Figure 7.8: AP4 taking the apex, from drive session of driving the complete track
of go-kart Centralen, Kungälv

7.4 Digital twin of autonomous platform

By using the ROS2 framework one can take advantage of its seamless integration
with the Gazebo physics simulator. By choosing and configuring Gazebo plugins,
the common data streams can be mapped to Gazebo plugins in order to interface
with the simulation software. Together with the software switch, this enables the
high-level software control algorithms to control the digital twin. There exist many
readily available gazebo plugins that can expand the digital twin capability in the
future. As of now, two gazebo plugins are used. An Ackermann steering plugin,
which controls the autonomous platform movement inside the simulation, provides
means to control the platform and get the state of the platform back onto ROS
topics. There also exists a camera plugin. Which simulates a mounted camera on
the platform.

In order to represent the autonomous platform hardware, its kinematics, and dy-
namics a simple URDF file has been created. This file describes how the autonomous
platform is driven and how the steering geometry is set up. The URDF file can also
be configured to define sensors that are mounted on the platform and how gazebo
plugins should simulate them. In summary, the digital twin can be controlled using
the same commands as the physical twin.
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Figure 7.9: Digital twin, visualized in Rviz. Which consist of the back wheels
which are moving the platform forwards, a body plate, and the front wheels with

Ackermann steering geometry.

7.5 Autonomous platform 4th generation capabil-
ities

In table, Table 7.7, the driving characteristics of AP4 and software versions are
described. Other characteristics of the AP4 include a modular and flexible design
that enables the developers to quickly change and implement new hardware. The
low-level functionalities in the central master computer control the fundamental
dynamics of the AP4 such as steering and propulsion. Thus the base for further
development is constructed, by having minimal changes in higher-level functional-
ities. Furthermore, each ECU has internal run-time tests to verify that the given
commands are within limits and that the communication to modules has not been
dropped. If an error is encountered an error frame will be sent to the central master
computer.
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Table 7.7: Technical specification on the capabilities of AP4 regarding its driving
characteristics, software and hardware compatibilities.

Capabilities
Domain Function Descprition Unit

Driving Characteristics

Maximum Velocity When ninebot is selected to be
in sport mode, in the app 24 [km/h]

Reverse Velocity When ninebot gokart is in reverse
mode by pressing brake two times 3 [km/h]

Motor Power Rated power of the Segways motors 2x400 [W]
Turning Radius Radius with AP4 steering system 3 [m]
Range The range of the Segway 15 [km]

Communication
CAN Main communication between ECUs

and Central Master Computer 1 Mbit/s

Ethernet Communication between the two units
of the central computer 1000 Mbit/s

wifi Possibility to connect remotely can vary

Softwares of AP4

ROS2-Humble Is the middleware/framework where
highlevel control is located -

Docker-23.03.3 Containerized software where the
SW of AP4 is running on -

Ubuntu-22.04 Common operating system for SW
developing -

C++11
Lowlevel SW of each ECU is written
in Arduino Framework, which is based
o C++.

-

Hardware Capabilities Battery runtime The time for operating the AP4s
components 3 [h]
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Discussion

This chapter will discuss the requirements for the autonomous platform itself, the
verification results, how well the performance is, choices made during development,
and possible future research and development of the autonomous platform project.

8.1 Centralized E/E architecture: key insights
from design and development

The selection of a centralized E/E architecture has shown to be suitable and appro-
priate. Centralized E/E architecture allows for shorter development times and higher
flexibility for future functionalities. The shorter development times are based on the
construction of the architecture itself by using a centralized HPC unit that conducts
all the higher-level computations and decisions and the ECUs for low-level software
interfaces to enable sensor readings and actuation outputs. Thus during new soft-
ware development and releases, a minimum number of units will be affected namely
mostly the central master computer thereby allowing the possibility to develop more
computationally costly systems. In contrast to a decentralized architecture where
several ECUs together constitute higher-level algorithms and functions. Moreover
during software updates and releases several ECUs are affected and compatibility
must be verified, making it far more complex to work on.

The centralized E/E architecture has enabled software to be built in layers, from
high-level to actuator controls. This has made the software structure intuitive and
easy to follow. Meaning that the project can continue to be developed for a long time.
The modularity in software layers also leaves a lot of space for future improvements,
layers can be upgraded later on to increase functionality, complex dependencies of
functionalities can be avoided, and to implement a single function, only a specific
part of the software needs to be changed. Doing the same in a decentralized archi-
tecture means that several ECU software need to be upgraded, separately, which
greatly increases the chance of breaking dependencies and existing functionality.
Furthermore, it also takes a longer time. Moreover, by sending sensor data to the
high-level software, it can be processed using high-performance hardware and very
complex algorithms, doing this in a decentralized system would affect the perfor-
mance of ECUs. As long as the communication between hardware-interfacing ECUs
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and high-level software is sufficient, this has proved to be a good pipeline for the
autonomous platform project. As the trend within the automotive industry is to
integrate more and more functionality into vehicles, there has to be computational
power to process all the data. A centralized architecture shows great promise to
solve the issues present in a decentralized architecture.

When it comes to practical use within the automotive industry, the systems used in
commercial vehicles have several orders of magnitude greater requirements on soft-
ware robustness and safety criticality compared to the autonomous platform project.
This means the specific solutions proposed in this thesis may not be applicable to
an autonomous vehicle.

8.2 Validation of requirements

As described in subsection 3.2.2 previous generations suffer from several problems
regarding usability and flexibility. Thus the requirements regarding modularity,
flexibility, and scalability of the new platform meet the wishes of Infotiv, thereby
the new platform will facilitate further development in a more standardized and
easier way. Furthermore, the requirements of following industry standards will both
make the platform more accurate to a real vehicle and simplify the process for
laymen to understand the new platform. However, the driver safety requirements
are quite vague compared to a real vehicle that must follow many safety standards
and safety-critical protocols to be allowed on the roads. These types of hard and
distinct safety requirements are not applicable to a miniature automotive platform,
since the platform is a tool for developing proof-of-concept technologies and will
only be used in confined and controlled environments. The requirements regarding
vehicle driving characteristics and power supply are rational for its area of use,
thereby the propulsion and steering requirements will compose the new generation
with fundamental capabilities, to control its direction and velocity. Having the
option to select the power supply offers flexibility. Using the battery will make the
AP4 mobile and thus possible to test and verify AD systems running the vehicle.
Having a stationary power supply unit will allow testing the AP4 stationary in the
lab environment thus lengthening the life cycle of the battery.

The requirement for choosing centralized E/E architecture is based on the latest
trends in the automotive industry. Thus the AP4 will be up to date and allow
to development of the latest technology. Furthermore having a centralized E/E
architecture as a requirement has influenced other requirements such as hardware
requirements. In such a way that for example, the computing unit has the possi-
bility to implement a centralized E/E architecture with a central high-performance
computer.
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8.3 Results from verification

The verification results regarding the battery voltage limits do not meet the required
specifications. Since the voltage level varies between 12.62 V at idle and 11.2 V at
full load. The exceeding overvoltage that differs from the nominal voltage of 12.0 V,
is not severe. Since the chosen hardware circuit boards contain built-in over-voltage
protection, the relatively low overvoltage is not critical. Furthermore, the system is
designed to be able to handle small overvoltages using a voltage regulator, to protect
the embedded systems. However the voltage drop of 11.2 V that occurs at full load,
a person sitting when steering moves along the complete range of motion. The
reason behind this is the steering motor that requires far more current to overcome
the increased friction from the extra weight and change the steering angle. This
can be seen in Table 7.3, where the DC motor consumes roughly 4 A more than
the case of no load. This will result in higher current output from the battery and
lower voltage for a short time period. The increased current might cause problems,
such as the fuses being blown. Something was experienced during the test day at
Go-kart Centralen when conducting the steering test with a full load, where a 15A
fuse of the battery was blown. The same test was conducted at Infotiv’s office with
no fuses being blown, so the only factor is the flooring characteristics. The go-kart
track is made to create more friction in order to allow the go-karts to turn at higher
speeds whilst the office floor is made out of laminated wood. The friction constant
of the go-kart Centralens floor is assumed to be so much larger, requiring far more
torque in the motor to overcome the increased friction, since torque is proportional
to current an increased current spike will be observed. Furthermore, the battery’s
energy capacity is far enough to be able to power AP4 for over 5 hours during mixed
driving. Thus meeting the requirements and desires with a good result.

The steering specification of having a margin of 20% or less is not met. As can be
seen in Table 7.4 there seems to be an offset of 5 degrees, this might be some errors
from a bad calibration. Another source of error is the not-so-scientific measurement
method using a protractor. Despite the results, the steering accuracy can be seen
as accurate enough for current use and future use. The implemented drive-by-wire
systems use a reference from a handhold controller and a person who will act as a
feedback controller that will compensate for the control error. Some AD and ADAS
systems have approximately the same approach, where the steering request is a
normalized value between maximum and minimum steering angles, the feedback
comes from some sort of localization function that requires more or less steering
angle.

The minimum propulsion specification is completely met as described in Table 7.1.
It is possible to both move forward and enable the reverse mode in order to go
backward. The longest braking distance of 2 meters is within the limits. One
important requirement being that the physical pedals work in parallel with AP4
was also verified. However, due to time restrictions and some connection problems
when conducting tests at Go-kart Centralen it was not possible to measure different
velocities. Measuring the set reference voltage and corresponding velocity of the
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vehicle could make it possible to model the complete propulsion system that now acts
as a black box. Having a complete and accurate model, it could be integrated into
the digital twin and also optimize a future velocity feedback controller, preferably a
PID to minimize any velocity error.

The Computing unit requirements are completely met with the chosen hardware of
a Raspberry Pi 4b as seen in Table 7.5. One important note is that the central
master computer is built up of two different units where the high-level controlled
unit can be easily exchanged due to the containerized software. For the moment, a
laptop is far enough to meet the capabilities of a drive-by-wire system.

The specification regarding the modularity in both software and hardware is fulfilled.
Hardware-wise it can be seen in section 5.4 how the system has been designed in
order to fulfill modularity, scalability, and usability. The physical result can be
seen in section 7.2, which is built upon the standards of the project. Having a
standardized design increases usability and eases the understanding of the complete
system. Due to the rectangular pattern of mounting holes, it is possible to change the
physical layout relatively easily, by just screwing and unscrewing bolts. Furthermore,
the system also has the possibility in the same way add completely new hardware
components on top of the mounting plates or the already mounted casings that have
the same hole pattern. Scalability is achieved by having the general ECU bases to
build specific functionalities on. With the same reasoning modularity in software has
also been achieved in the structured coding bases for ECUs. In high-level software,
modularity has been achieved by using ROS2 packages and nodes to have the high
flexibility and modularity to add or remove said nodes or packages without breaking
dependencies. The implementedCAN signals to ROS2 Topic Converter standardizes
a pipeline to communicate from the central master computer and to the rest of the
components of the platform. Thus the communication is very flexible for adding
new CAN frames without software dependencies in other packages.

8.4 Choices made during development
This section discusses the choices that were made during development regarding
hardware and software.

8.4.1 Hardware
The selection of hardware components such as the Raspberry Pi 4b, Bluepill, and
CAN transceivers MCP4725 were choosen as this is a prototype and the component
choices may change in future. Furthermore, the selection of hardware components
is off-the-shelf boards, thereby having the advantage of being well documented as
well as belonging to the open-source software libraries that could be utilized. This
shortens development time, as only higher embedded software is needed to be de-
veloped. Lastly, the selection of lead-acid batteries is based on the far more stable
characteristics of usage. Even the small risk of having an accident or failure of a
lithium battery can result in catastrophic consequences. Thus there exist far more
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safety regulations and handling regarding lithium batteries that can thus be avoided.

By reusing the steering system and components from AP3 a lot of time and ef-
fort could be saved. The steering motor and system of pulley system in AP3 were
analyzed in subsection 3.2.2, the conclusion being made that it worked almost seam-
lessly but it had some loose pulleys. Since the previous thesis on AP3 made spare
parts for steering these were selected to be used on AP4 as well. However, the loose
pulleys were taken care of using tighter screws and a thread locker.

The propulsion of the AP4 could be solved in two distinct ways either by imitating
the hall sensors of the pedals or by decoding and integrating them into the internal
communication system of the go-kart kit. The latter is way too time-consuming and
deemed almost impossible without having the correct protocol, which was concluded
in subsection 3.2.2. However, one drawback of using the communication approach
would be that the pedal readings would be overwritten and ignored. Since the segway
motors would get their commands from the ECU mimicking the communication of
the go-kart system. So the choice was made to connect the voltage source parallel
to the pedals. Thus also having the benefit of the pedals still being operative and
working in parallel to the ECU. Thereby the braking pedal will always have priority
and brake the AP4 regardless of the throttle voltage. Another design choice of
having the seat still mounted raised several questions and discussions. Removing
the seat would free up a lot of space that could be used for hardware placement
instead. Thereby also achieving a more geometric central point of mass, with the
battery and computers placed where the seat is mounted. However, the advantage
that weighed up against the removal, was the possibility of still having a person
sitting during movement. Thus the driver could hit the brake if necessary or the
emergency killswitch if some electrical failure occurs.

8.4.2 Software
Software that is used on autonomous drive vehicles needs to be very robust, time-
critical, and may never cause undesired behavior. Autonomous platform generation
4 can be seen as a testbed and developing platform in that regard and does not
have the same robustness requirement. The platform will not be harmful to nearby
humans if something goes wrong with the software due to its physical size and low
velocity. This allows the software development and its design to be more flexible
compared to what will be used on a commercial vehicles. Meaning that early stages
of AD and ADAS algorithms can be tested on a small platform to verify its principles
and strategies.

The software on an autonomous platform should be flexible, in terms of functionality
and how algorithms are implemented. It should be easy to try out different control
algorithms, autonomous drive functionality, and sensor processing. Without having
to restructure the whole codebase. By splitting the software into three distinct
blocks, it adds three layers of abstraction to the software. Functions implemented
in one layer should not affect the behavior of functions from another layer. This
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creates a robust system where changes can be made to the system without breaking
it. An underlying component of any software is the communication and transfer
of data between algorithms and control algorithms. On an autonomous platform,
ROS2 is used to accomplish this.

The framework and middleware on which the high and low-level software function-
ality is built on the Robot Operating System 2. This framework makes it possible to
design software in such a way that it is very modular and robust. The exchange of
data and information between different software components is therefore guaranteed
to be reliable and on time. It is very easy to use and pass data created in one part
of the system to a different software component using topics, services, or actions.
The description of ROS2 and its capabilities can be found in subsection 2.3.2. By
configuring the framework and the host operating system it is guaranteed to be
real-time capable, making it very easy for a developer to create software that needs
to meet hard-time requirements. By using ROS2 and its APIs, many of the complex
software functions such as data transfers are already handled by the framework.
This gets exposed to the developers by using topics.

Both the high-level and low-level code blocks are placed inside Docker containers.
As presented in subsection 2.3.1, using containers does not add affectable perfor-
mance overhead or timing overhead. The small loss of performance is outweighed
by the portability of the software created. In practice, this also allows for external
remote access to the connected software system by connecting yet another container
running the robot operating system. Since the containers are set up, a secondary
high-performance computer can open and run the digital twin whilst a secondary
container controls the autonomous platform hardware. Containerization also makes
the software very portable, as containers in theory can be deployed on any hardware
supporting it. For the lower-level software, this would not make sense though, as
the software inside it has been configured to run on a Raspberry Pi. But it is a
feature for the higher-level control software container. Several developers can work
on different parts of the software at the same time and test it using the digital twin
located in the higher-level software container. To test new algorithms, the container
on a development laptop would simply need to be connected with the lower-level
software container over wifi or ethernet.

8.5 Future work and research
This section will discuss possible future work and continuation on autonomous plat-
form generation 4. Firstly the shortcomings of the platform should be addressed
and solved and then functionality could be expanded as a robust modular HW and
SW base has been created so far.

8.5.1 Digital twin
Although the digital twin can be controlled using the same commands as the physical
platform, it needs some development regarding its driving dynamics and kinematics
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to be more realistic. The Gazebo plugin used to control it, called Ackermann drive,
needs to be tuned properly. It would also be possible to adjust dynamic behavior
by tuning parameters for the go-kart chassis inside the URDF file. Inserting sensors
into the digital twin is trivial, but making the digital twin act in the same way as the
physical twin is not.Because the dynamics and kinematics are not properly tuned
according the to the physical platform. As presented in theory, many digital twins
fail due to not representing the proper driving dynamics of the physical twin.

Being able to use the same high-level control of both digital twin and physical twin
shows great potential in being useful for future work. The control software can
be tested and verified in a simulated environment before being tested on actual
hardware, in turn saving a lot of development time.

8.5.2 Propulsion and steering of autonomous platform

Propulsion for the autonomous platform is a vital component and sets the base
functionality to which future functionality can be added. Without precise propulsion
control, it would not be relevant to implement further sensors or AD functions. As
it is now, the autonomous platform has rudimentary propulsion control. It can drive
forward with a velocity between 0 and 8 km per hour. However since it is currently
controlled through an open-loop controller, there is no guarantee that the requested
velocity in the software will be reached by the propulsion motor. By guaranteeing
that a requested velocity will be met future research on this platform can trust
its behavior more. Therefore, an important future work would be to implement a
feedback propulsion controller. The hardware for this functionality is mounted on
the platform, but due to time restraints, it could not be implemented in software
for this thesis.

The steering control works very well, even if only a simplified open-loop controller
is implemented inside the low-level software. Requested steering angles can be set
reliably since the DC motor mounted to the steering shaft has internal encoders and
it has closed-loop capabilities on the motor driver board already.

As it is implemented right now, the steering and propulsion control systems are
decoupled. Meaning they are controlled independently. As a proof of concept, this
worked sufficiently, but it does not reflect a bicycle or Ackermann kinematic model
which is often used to model vehicle behavior. For example, as it is implemented
now, a requested turning rate for the platform is converted into a steering angle
directly, without taking into account the physical dimensions. An interesting area
in regard to this and future work would be to model the Ackermann steering and
propulsion behavior and implement a suitable controller for it. Investigating other
useful sensors with regard to vehicle dynamics would also be useful, i.e. using an
Inertial Measuring Unit together with the wheel speed sensors to detect in which
direction the platform is moving. The more accurately the movement of the platform
can be described, the more complex trajectories can be followed.
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8.5.3 Sensors on autonomous platform
Due to time constraints, the only sensor fully integrated into the platform was
a web camera. Future work and research in this area would be integrating further
sensors used in autonomous driving. As stated in subsection 2.2.2 the most common
sensors are radar, lidar, and ultrasonic. Cost-effective versions suitable to use on an
autonomous platform would need to be found. In order to implement these in the
digital twin simulation environment the specification of the sensors would need to
be verified by doing some tests on the hardware chosen to mount on the platform.
Another interesting sensor technology to integrate into AP4 would be a 3D lidar.

8.5.4 Battery
The voltage dropped very low whilst turning the steering shaft when an operator
was sitting on the platform and the 15 Amp fuse broke. It is therefore clear that
the power management system of the autonomous platform needs to be further
developed in order to satisfy all requirements and specifications.

A more thorough power consumption analysis needs to be performed, according to
the specifications of the steering shaft motor it could draw up to 13 Amps of current,
yet it broke a 15A fuse during the test day. The surface on which the platform is
driven on also plays a role in power consumption, the same test performed on a
smooth office floor did not break the fuse. To get further insight into this one
could implement continuous voltage and current draw monitoring in software on the
autonomous platform. The hardware is there, but due to time constraints, it could
not be implemented in software. A possible solution to the voltage dropping well
below the specification could be to implement a voltage regulator in series after the
battery module.

8.5.5 Autonomous driving functionality
There are many possibilities for future work in the area of integration of different
autonomous driving functions. By integrating an existing autonomous driving func-
tionality with the platform one would verify the platform’s ability to be modular in
software, as well as test the ease of integration. There are many open source alter-
natives that can be tried out. One limitation is that the choosen AD algorithm has
to be compatible with the software of AP4. Furthermore the hardware requirements
to enable AD has to be implemented and verified on the platform first.
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The purpose of this thesis is to develop an autonomous platform with a centralized
E/E architecture to implement and test AD and ADAS systems. Using a centralized
E/E architecture enables modularity, scalability, and flexibility both hardware- and
software-wise. A centralized E/E architecture allows for more flexibility and more
computational capacity by having a high-performance computational unit that per-
forms all high-level and complex calculations and low-level ECUs to handle sensor
information and actuator control. Another key advantage of centralized is the low-
ered complexity of software since it can be vertically integrated in-house. Further-
more, a centralized architecture allows for the possibility of designing generic ECU
bases for the low-level units, which is a well-suited foundation for plug-and-play
software and hardware development.

The developed platform includes the design of a centralized architecture using a
high-computational unit and low-level ECUs. The communication between the units
is accomplished by using the standard ROS2. Furthermore, a framework using
containerized software (docker) is to offer modularity and flexibility in software
design. The platform also includes the design of a modular and flexible mounting
system for hardware components, through the use of premade aluminum plates
with holes. The holes can used to mount different casings, containing circuit boards,
ECUs, etc. This allows an easy change of the physical layout, mounting new casings,
or even removing parts without any strict dependencies. Furthermore, the usage of
standardized outlets further improves the scalability of the system, since it is possible
to connect in parallel with premade cables. The complete system architecture has
successfully been implemented on a miniature vehicle platform.

Apart from the physical design, a digital twin of the vehicle platform has been
developed. The digital twin uses the built-in functionalities in ROS2, which offers
seamless integration with the physics simulator Gazebo. Even though a mere simple
digital twin is implemented, there is great potential to make it represent the physical
platform driving dynamics in future work. A properly configured digital twin has
many benefits, such as faster testing of implemented functionality. In this thesis,
it was proved possible to use the same high-level control commands on the digital
twin as for the physical platform.
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9. Conclusion

The autonomous platform project can be seen as a work in progress since the end
goal is subjective by having a self-driving system. The performance can vary and the
methods used can also be varied or optimized along the way. This includes adding
more sensors, actuators, and ECUs on the platform constructed within the thesis.
Nonetheless, the produced platform is a solid base to conduct future research and
implementation.
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A
Electrical Circuits of Power

Module

Figure A.1: Power in to AP4 out flow described in a electrical circuit. Including
voltage sensor, current sensor, switches for power on and emergency stop killing all

the power in AP4.

Figure A.2: Battery supply to the outlet Battery out flow described in a
electrical circuit. Including voltage sensor, current sensor, fuse and emergency stop

killing all the power in AP4.
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A. Electrical Circuits of Power Module
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B
Rendered Figures of Other

Components

Figure B.1: Flexible wire holder to drop and click wires and cables, to manage
wiring of AP4.

Figure B.2: Casing for the hardware interfacing computing unit, for the chosen
component of Raspberry Pi 4b.
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B. Rendered Figures of Other Components

Figure B.3: Casing for SPCU, steering module (grey) and casing for propulsion,
based of the generic ECU casing, figure 5.6.

(a) Back mounting plate holder (b) Mountingplate holder.

Figure B.4: Mountings for holding the aluminium plate.
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B. Rendered Figures of Other Components

(a) Front left wing. (b) Front right wing.

Figure B.5: Front wings with the standardised grid layout.

Figure B.6: Laptop holder, placed on the central panel of the go-kart.
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B. Rendered Figures of Other Components

Figure B.7: Speed sensor (yellow)- and limit switch holder, placed on the gokarts
steering geometry with an encoder wheel (blue).
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C
Bill of Materials

This appendix describes the list of components that is mounted on the autonomous
platform and their price in SEK.
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BOM Autonomous Platform Generation 4
TOTAL PRICE SEK: 16139,3

Part Name Quantity Area of Use Price (SEK)

CENTERAL MASTER COMPUTING UNIT
Raspberry Pi 4 Starter Kit 4 
GB 1 Rasberry Pi 4b for Low Level Hardware interface 1890

LM2596 DC-DC converter 1

Power components on AP4. 
In voltage 3.2-46
Output voltage 1.25 - 30
3A 25

DB9 BREAKOUT BOARD 
Male 1 HW Node standardised DB 9 can bus connector 66
DIR-842-V2 Wifi Router 1 Wifi router / switch with 1000 MB/s ports 499
RS485 CAN HAT Raspberry 
Pi 1 Prebuilt CAN shield for raspberry Pi 203
Raspberry Pi 4 7 mm 
heatsink 1 Low profile raspberry pi cooling heatsink and fan. 120
Axial Fan DC 40x40x10mm 
12V 1 Cool Down hardware interface 57

Xbox controller 1
Wireless controller and USB reciever for 
remote control of ap4 899

7inch IPS Capacitive Touch 
Screen  1024x600 
Resolution LCD Display 1

Display for hardware interface raspberry Pi 4, 
System monitoring whilst running platform 900

Power Module

XT60 Male 1
Connecting power to various components on 
autonomous platform. Max 60 Amp. 21

XT60 Female 2
Connecting power to various components on 
autonomous platform. 40

Current ant voltage reading 
sensors 1

Possibility to measure voltage of AP4 and 
current during runtime programatically 120

Emergency stop 2

Emergency stop if something unexpected 
happens, breaks power to all components except 
ninebot segway 274,52

Led Acid Battery 1 12 V, 30 Ah 799

Battery Charger 1 Led Acid Battery Charger IP68, 12 V, 8 A 649

Automotive grad fuse 1 Blow fuse if ftoo much power is drawn from battery 25

Fuse Holder 1 Connects fuse to battery circuit 33

C14 Contact 1 Intag, C14, 250V, Schurter, till batterimodulen och externt PSU126

Din rail mounted PSU 1 90% Efficiency, 12V, 10A, 120W 875

Fuse connector 
for C14 outlet 1 42

C. Bill of Materials
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BOM Autonomous Platform Generation 4
TOTAL PRICE SEK: 16139,3

Part Name Quantity Area of Use Price (SEK)

Generic ECU base Components
Quantity inside brackets are required for ONE ECU

LM2596 DC-DC converter 3(2)

Power components on AP4. 
In voltage 3.2-46
Output voltage 1.25 - 30
3A

110

XT60 Male 1

Connecting power to various components on 
autonomous platform. Max 60 Amp. Package 
of 20 209

XT60 Female 1

Connecting power to various components on 
autonomous platform. Max 60 Amp- Package 
of 20. 199

XT60 splitter (1)5

Parallell wired M-M to M Y connector for XT60 
contact. Enables one to parallell wire new 
components on platform 550

Jumper wire F-F 6
Jumper wires bradboard, Female to Female, pack 
ofo 10 72

Jumper wire M-M 6 Jumper wire breadboard, Male to Male, pack of 10 78

Jumper wire M-F 6
jumper wire breaboard, Male to Female, pack of 
10 78

DB9 BREAKOUT BOARD 
Male 9 HW Node standardised DB 9 can bus connector 596

STM32 bluepill

Ersätta dem stm32 bluepillsen vi tagit från infotivs 
inventarier

OBS köp 5 packet 490
MCP2515 can-bus modul 5 Ersätta dem mcp2515 korten vi tagit från infotiv 151

Flätad kabel 4 x 0.14 mm² 1
Ihophäftade kablar, gör de mer neat när man 
drar kablar inuti HW noden. 10 Meter 89

GPIO-staplingslist 2x20 6 Connect sensors to HW Node 222

Logic Level Converter 5

Converts 5v logic levels to 3.3v logic level
Used to interface stm32 bluepill (3v) to 5V CAN 
module 160

Axial Fan DC 40x40x10mm 
12V 4 Cool down each ECU 228
LED röd 25 Show ECU power status 42,25
LED grön 25 Show node software status 42,25
Automotive grad fuse 5 Blow fuse if ftoo much power is drawn from battery 165
Fuse Holder 5 Connects fuse to battery circuit 125
ST-link v2

Program stm32f103c8t6 Bluepill microcontroller 

Jumping wire crimping kit with housings 1
Kit med crimp housings och hankontakter (inte 
hittat hankontakter på infotiv?) 112

SPCU Components
Digital to Analog Converter 
MCP4725 2 Circuit to send analog voltages to gokart pedals 120
Sabertooth 25x2 Motor driver 1 Drives the dc-dc motor 1300

C. Bill of Materials
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BOM Autonomous Platform Generation 4
TOTAL PRICE SEK: 16139,3

Part Name Quantity Area of Use Price (SEK)

Sabertooth Kangaroo x2 
Motion Controller 1

Circuitboard motion controller board 
daughterboard to sabertooth
-Send positional command through serial to it
-connect EMG49 Motor Hal sensors to it, and two 
endstop switches and it will configure itself 270

Microswitch 440 mN 2
Microswitch to detect steerng maximum and 
minimum limits 30

IR Speed sensors 4
Speed sensors front and back wheels

164
emg49 dc-dc 
motor with 50-1 gearbox 1 DC-DC motor to controll the steering wheel
EMG49 mounting bracket 1 mounting L bracket for motor
EMB49 mounting
 bracket holder

See AP3 documentation for dimensions, 
leftover component was used on AP4

Mounting Hardware & Components
Screw m6x50mm 1 Insexskruv M6 x 50, rostfri A2, 10 st. 60
Angled Steel bracket 6 59,4
threadscrew 1 159
Screw M5x35 mm 1 40
Screw m3x10 2 set of 100 screws 130
Screw m3x16 2 set of 100 screws 130
Screw m4x10 2 set of 100 screws 220
Screw m4x16 2 set of 100 screws
nut M4 4 sets of 100 nuts 260
nut M3 4 sets of 100 nuts 104,88

Wire Management
Sprial Wire Tube, 10mm 5 Wrap around loose cables 150
Sprial Wire Tube, 23mm 5 Wrap around loose cables 300

List of wires
Ethernet
DB9
1.5 mm coppar wire red
1.5 mm coppar wire black

C. Bill of Materials
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BOM Autonomous Platform Generation 4
TOTAL PRICE SEK: 16139,3

Part Name Quantity Area of Use Price (SEK)

Sensors

USB kamera, Logitech c920 1
Front facing camera AP4.Documented to work well 
with existing ros2 camera packages! 1260

C. Bill of Materials
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D
Code Listings

Listing D.1: dbc format for CAN protocol

VERSION " HIPBNYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY /4/%%%/4/ ’%**4
YYY ///"

NS_ :
NS_DESC_
CM_
BA_DEF_
BA_
VAL_
CAT_DEF_
CAT_
FILTER
BA_DEF_DEF_
EV_DATA_
ENVVAR_DATA_
SGTYPE_
SGTYPE_VAL_
BA_DEF_SGTYPE_
BA_SGTYPE_
SIG_TYPE_REF_
VAL_TABLE_
SIG_GROUP_
SIG_VALTYPE_
SIGTYPE_VALTYPE_

BS_:

BU_: SPCU CMCU

BO_ 500 Error_SPCU : 1 SPCU
SG_ Heartbeat : 0|1 @1+ (1 ,0) [0|1] "Bool" Vector__XXX
SG_ Propulsion_Error : 1|1 @1+ (1 ,0) [0|1] "Bool" Vector__XXX
SG_ Steering_Error : 2|1 @1+ (1 ,0) [0|1] "Bool" Vector__XXX

BO_ 1000 Set_SPCU : 8 CMCU
SG_ Act_ThrottleVoltage : 33|13 @1+ (1 ,0) [850|5100] "mV"

Vector__XXX
SG_ Act_BreakVoltage : 0|13 @1+ (1 ,0) [850|5100] "mV" Vector__XXX
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D. Code Listings

SG_ Act_SteeringPosition : 17|8@1 - (1 ,0) [ -180|180] " Degree "
Vector__XXX

SG_ Act_Reverse : 16|1 @1+ (1 ,0) [0|1] "Bool" Vector__XXX
SG_ Act_SteeringVelocity : 25|8 @1+ (1 ,0) [0|0] "units/s"

Vector__XXX

BO_ 2000 Get_SPCU : 8 SPCU
SG_ Get_SteeringAngle : 0|9@1 - (1 ,0) [ -180|180] " Degree "

Vector__XXX
SG_ Get_ReverseMode : 9|1 @1+ (1 ,0) [0|1] "Bool" Vector__XXX

BO_ 100 Request_Heartbeat : 8 CMCU
SG_ Sig_Req_Heartbeat : 0|64 @1+ (1 ,0) [0|255] "" Vector__XXX

BO_ 101 Response_Heartbeat_SPCU : 8 SPCU
SG_ Response_Heartbeat_sig : 0|8 @1+ (1 ,0) [0|1] "" Vector__XXX

BO_ 102 Response_Heartbeat_XXX : 8 Vector__XXX

CM_ BO_ 500 "Error Handler frame ";
CM_ SG_ 500 Heartbeat " heartbeat to detect that the ecu is still

active ";
CM_ SG_ 500 Propulsion_Error " Boolean to detect if some error has

occrued in propulsion control ";
CM_ SG_ 500 Steering_Error " Boolean to detect if some error has

occured in Steering Control ";
CM_ BO_ 1000 "Set values ";
CM_ SG_ 1000 Act_ThrottleVoltage "";
CM_ BO_ 2000 "Get sensor reading ";
CM_ BO_ 100 "To see if the node is still running ";
CM_ SG_ 100 Sig_Req_Heartbeat " Request heartbeat signal from HW

nodes ";
CM_ BO_ 101 " Responds to a request heartbeat frame ";
CM_ SG_ 101 Response_Heartbeat_sig "Sends a value of 1 to respond

to a heartbeat request ";
BA_DEF_ SG_ "SPN" INT 0 524287;
BA_DEF_ BO_ " VFrameFormat " ENUM " StandardCAN "," ExtendedCAN ","

reserved "," J1939PG ";
BA_DEF_ " DatabaseVersion " STRING ;
BA_DEF_ " BusType " STRING ;
BA_DEF_ " ProtocolType " STRING ;
BA_DEF_ " DatabaseCompiler " STRING ;
BA_DEF_ BO_ " GenMsgSendType " ENUM " cyclic "," spontaneous ";
BA_DEF_ BO_ " GenMsgCycleTime " INT 2 50000;
BA_DEF_ BO_ " GenMsgAutoGenSnd " ENUM "No"," Yes ";
BA_DEF_ BO_ " GenMsgAutoGenDsp " ENUM "No"," Yes ";
BA_DEF_ SG_ " GenSigAutoGenSnd " ENUM "No"," Yes ";
BA_DEF_ SG_ " GenSigAutoGenDsp " ENUM "No"," Yes ";
BA_DEF_ SG_ " GenSigEnvVarType " ENUM "int "," float "," undef ";
BA_DEF_ SG_ " GenSigEVName " STRING ;
BA_DEF_ BU_ " GenNodAutoGenSnd " ENUM "No"," Yes ";
BA_DEF_ BU_ " GenNodAutoGenDsp " ENUM "No"," Yes ";
BA_DEF_ " GenEnvVarEndingDsp " STRING ;
BA_DEF_ " GenEnvVarEndingSnd " STRING ;
BA_DEF_ " GenEnvVarPrefix " STRING ;

XIV



D. Code Listings

BA_DEF_DEF_ "SPN" 0;
BA_DEF_DEF_ " VFrameFormat " " J1939PG ";
BA_DEF_DEF_ " DatabaseVersion " "DEMO PLUS ";
BA_DEF_DEF_ " BusType " "";
BA_DEF_DEF_ " ProtocolType " "";
BA_DEF_DEF_ " DatabaseCompiler " "";
BA_DEF_DEF_ " GenMsgSendType " " spontaneous ";
BA_DEF_DEF_ " GenMsgCycleTime " 100;
BA_DEF_DEF_ " GenMsgAutoGenSnd " "Yes ";
BA_DEF_DEF_ " GenMsgAutoGenDsp " "Yes ";
BA_DEF_DEF_ " GenSigAutoGenSnd " "";
BA_DEF_DEF_ " GenSigAutoGenDsp " "";
BA_DEF_DEF_ " GenSigEnvVarType " "undef ";
BA_DEF_DEF_ " GenSigEVName " "";
BA_DEF_DEF_ " GenNodAutoGenSnd " "Yes ";
BA_DEF_DEF_ " GenNodAutoGenDsp " "Yes ";
BA_DEF_DEF_ " GenEnvVarEndingDsp " "Dsp ";
BA_DEF_DEF_ " GenEnvVarEndingSnd " "Snd ";
BA_DEF_DEF_ " GenEnvVarPrefix " "Env ";
BA_ " ProtocolType " "J1939 ";
BA_ " BusType " "CAN ";
BA_ " DatabaseCompiler " "CSS ELECTRONICS (WWW. CSSELECTRONICS .COM)";
BA_ " DatabaseVersion " "1.0.0";
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