arXiv:2204.07874v1 [cs.SE] 16 Apr 2022

Springer Nature 2021 B TEX template

Ergo, SMIRK is Safe: A Safety Case for a
Machine Learning Component in a Pedestrian
Automatic Emergency Brake System

Markus Borgh?", Jens Henriksson®, Kasper Sochal?, Olof
Lennartsson?, Elias Sonnsjo Lonegren?, Thanh Bui!, Piotr

Tomaszewski!, Sankar Raman Sathyamoorthy®, Sebastian
Brink® and Mahshid Helali Moghadam!

"RISE Research Institutes of Sweden, Lund, Sweden.
2Dept. of Computer Science, Lund University, Lund, Sweden.
3Semcon AB, Gothenburg, Sweden.
4Infotiv AB, Gothenburg, Sweden.

SQRTECH AB, Gothenburg, Sweden.
6Combitech AB, Gothenburg, Sweden.

*Corresponding author(s). E-mail(s): markus.borg@ri.se;
Contributing authors: jens.henriksson@semcon.com;
kasper.socha@ri.se; olof.lennartsson@infotiv.se;
elias.sonnsjo@infotiv.se; thanh.bui@ri.se;
piotr.tomaszewski@ri.se; sankar.sathyamoorthy@qrtech.se;
sebastian.brink@combitech.com; mahshid.helali.moghadam@ri.se;

Abstract

Integration of Machine Learning (ML) components in critical appli-
cations introduces novel challenges for software certification and ver-
ification. New safety standards and technical guidelines are under
development to support the safety of ML-based systems, e.g., ISO 21448
SOTIF for the automotive domain and the Assurance of Machine Learn-
ing for use in Autonomous Systems (AMLAS) framework. SOTIF and
AMLAS provide high-level guidance but the details must be chiseled
out for each specific case. We report results from an industry-academia
collaboration on safety assurance of SMIRK, an ML-based pedestrian

Springer Nature 2021 BTEX template

2 Ergo, SMIRK 1is Safe

automatic emergency braking demonstrator running in an industry-
grade simulator. We present the outcome of applying AMLAS on
SMIRK for a minimalistic operational design domain, i.e., a com-
plete safety case for its integrated ML-based component. Finally, we
report lessons learned and provide both SMIRK and the safety case
under an open-source licence for the research community to reuse.

Keywords: machine learning safety, safety standards, safety case, automotive
demonstrator

1 Introduction

Machine Learning (ML) is increasingly used in critical applications, e.g., super-
vised learning using Deep Neural Networks (DNN) to support automotive
perception. Software systems developed for safety-critical applications must
undergo assessments to demonstrate compliance with functional safety stan-
dards. However, as the conventional safety standards are not fully applicable
for ML-enabled systems (Salay et al, 2018; Tambon et al, 2022), several
domain-specific initiatives aim to complement them, e.g., organized by the EU
Aviation Safety Agency, the ITU-WHO Focus Group on Al for Health, and
the International Organization for Standardization.

In the automotive industry, several standardization initiatives are ongoing
to allow safe use of machine learning in road vehicles. It is evident that the
established functional safety as defined in ISO 26262 Functional Safety (FuSa)
is no longer sufficient for the next generation of Advanced Driver-Assistance
Systems (ADAS) and Autonomous Driving (AD). One complementary stan-
dard under development is ISO 21448 Safety of the Intended Functionality
(SOTIF) (ISO, 2019). SOTIF is a standard that aims for absence of unrea-
sonable risk due to hazards resulting from functional insufficiencies — also for
systems that rely on ML.

Standards such as SOTTF mandate high-level requirements on what a devel-
opment organization must provide in a safety case for an ML-based system.
However, how to actually collect the evidence — and argue that it is sufficient
— is up to the specific organization. Assurance of Machine Learning for use in
Autonomous Systems (AMLAS) is one framework that supports the develop-
ment of corresponding safety cases (Hawkins et al, 2021). Still, when applying
AMLAS on a specific case, there are numerous details that must be analyzed,
specified, and validated. The research community lacks demonstrator systems
that can be used to explore such details.

We report results from an industry-academia collaboration on safety assur-
ance of SMIRK, an MIL-based ADAS that provides Pedestrian Automatic
Emergency Braking (PAEB) in an industry-grade simulator. This work has

Springer Nature 2021 BTEX template

Ergo, SMIRK 1is Safe 3

been completed as part of the Swedish research project SMILE III'. The contri-
butions of this paper are two-fold. First, we introduce SMIRK, a demonstrator
available on GitHub under an Open-Source Software (OSS) license — ready to
be reused by others in the research community. Second, we report the outcome
from a complete application of AMLAS on SMIRK. While parts of the frame-
work have been demonstrated before Gauerhof et al (2020), we believe this is
the first comprehensive use of the framework conducted independently from its
authors. Moreover, we believe this paper constitutes a pioneering safety case
for an ML-based component that is OSS and completely transparent. Thus,
our contribution can be used as a starting point for studies on safety engineer-
ing aspects such as Operational Design Domain (ODD) extension, dynamic
safety cases, and reuse of safety evidence.

Our results show that even an ML component in an ADAS designed for a
minimalistic ODD results in a large safety case. Furthermore, we consider three
lessons learned to be particularly important for the community. First, using
a simulator to create synthetic data sets for ML training particularly limits
the validity of the negative examples. Second, evaluation of object detection
is non-intuitive and necessitates internal training. Third, the fitness function
used for model selection encodes essential tradeoff decisions, thus the project
team must be aligned.

Figure 1 presents the structure of this long article. We are aware that
we include a large piece of work in a single publication unit. Still, we find
that a largely self-contained paper presenting a comprehensive safety case is
missing in the research community. As opposed to the “salami publication”
anti-pattern in academic publishing, we choose to present both SMIRK and
its complete safety case in the same article. The figure shows the four main
parts of this paper.

® Prolog: The first part of the paper consists of Sections 1-3, i.e., this intro-
duction, a brief overview of related work, and a method section. The method
section contains three parts, i.e., SOTIF, AMLAS, and how we applied them
in the SMILE IIT project. As presented by arrows, SOTIF influenced the
SMIRK development and we relied on AMLAS for the safety assurance.

e SMIRK: The second part describes the ML-based ADAS under study. We
present an overall system description, system requirements, the system archi-
tecture, the data management strategy, the ML-based pedestrian recognition
component, and the approach to testing in Sections 4-9, respectively. Finally,
we present an overview of the SMIRK test results in Section 10.

e Safety Assurance: Section 11 presents how we apply the six stages of AMLAS
to construct a safety case for SMIRK.

e Epilog: The final part of the paper presents lessons learned and limitations
in Section 12 before we conclude the paper and outline directions for future
work in Section 13.

Yhttps://tinyurl.com/smileiii

https://tinyurl.com/smileiii

Springer Nature 2021 BTEX template

4 Ergo, SMIRK 1is Safe

1 2.
o
<)
° Intro Related
a Work
9 4 5 6 7 8. 9. 10.
o § System System System Data ML System Test le]
% @ Desc. Regts. Arch. Man. Comp. Test. Results
A
o 111 11.2 11.3. 11.4 115 11.6
= c
o ® . ML Model Model Model
‘UES ﬁ Scoping Regts. Data Learning Verification Deployment
<
12. 13.
g
= Lessons Concl.
w

Fig. 1 Paper organization.

2 Related Work

Many researchers argue that software and systems engineering practices must
evolve as ML enters the picture, reflected by the organization of the first Inter-
national Conference on Al Engineering in 20222. Pioneering work in the dawn
of AT engineering includes a research agenda by Bosch et al (2021), an anal-
ysis on novel best practices by Serban et al (2020), and the evolving book
“Machine Learning in Production” by Késtner (2022). In this section, we focus
on aspects of Al engineering for safety-critical ML-based automotive systems,
i.e., safety argumentation in general and DNNs used for automotive perception
in particular. Moreover, we stress that the remainder of the paper contains
several references to related work as we discuss various design choices.

Many publications address the issue of safety argumentation for systems
with ML-based components. A solid argumentation is required to enable safety
certification, for example to demonstrate compliance with future standards
such as SOTIF and ISO 8800 Road Vehicles — Safety and Artificial Intel-
ligence. While there are several established safety patterns (e.g., simplicity,
substitution, sanity check, condition monitoring, comparison, diverse redun-
dancy, replication redundancy, repair, degradation, voting, override, barrier,
and heartbeat Wu and Kelly (2004); Preschern et al (2015)), considerable
research is now directed at understanding what is needed in the ML era. Our
previous work provides an overview of verification and validation of DNN-
based systems, including a challenge elicitation with the Swedish automotive
industry (Borg et al, 2019).

We have found two review studies that focus on ML and safety certifi-
cation. Schwalbe and Schels (2020) present an ad hoc overview on methods

2https://conf.researchr.org/track/cain-2022

https://conf.researchr.org/track/cain-2022

Springer Nature 2021 BTEX template

Ergo, SMIRK 1is Safe 5

that support safety argumentation for ML-based systems, organized into the
phases 1) requirements engineering, 2) development, 3) verification, and 4)
validation. For each phase, the authors present example methods from the
literature. Tambon et al (2022) present a systematic literature review cover-
ing 217 primary studies. The authors investigate fundamental topics such as
robustness, uncertainty, explainability, and verification — and calls for deeper
industry-academia collaborations. This paper responds to this call and explic-
itly targets the listed fundamental topics on an operational level. As the devil
is in the detail, we recommend additional researches of this nature. By con-
ducting hands-on development of an ADAS and its corresponding safety case,
we have identified numerous design decisions that have not been discussed in
prior work.

Not only AMLAS provides structured methods to support ML safety argu-
mentation. Picardi et al (2020) present a set of patterns that can be used to
develop assurance arguments for demonstrating the safety of the ML com-
ponents. The argument patterns provide reusable templates for the types of
claims that must be made in a compelling argument. Kochanthara et al (2021)
propose a safety assessment method on the systems-of-systems level, i.e., for
cooperative driving systems. While the method does not target ML specifically,
it discusses the context of platooning with a manually driven lead vehicle is fol-
lowed by autonomous vehicles — a solution that most likely requires ML-based
perception. Schwalbe et al (2020) systematically establish and break down
safety requirements to argue the sufficient absence of risk arising from such
SOTIF-style functional insufficiencies. The authors stress the importance of
diverse evidence for a safety argument involving DNNs. Moreover, they provide
a generic approach and template to thoroughly respect DNN specifics within
a safety argumentation structure. Finally, the authors show its applicability
for an example use case based on pedestrian detection.

Just like Schwalbe et al (2020), several researchers choose pedestrian
detection systems to illustrate different approaches to safety argumentation.
Wozniak et al (2020) provide a safety case pattern for ML-based systems and
showcase its applicability on a pedestrian avoidance system. The pattern is
integrated within an overall encompassing approach for safety case generation.
Willers et al (2020) discusses safety concerns for DNN-based automotive per-
ception, including technical root causes and mitigation strategies. The authors
argue that it remains an open question how to conclude whether a specific
concern is sufficiently covered by the safety case — and stress that safety can-
not be determined analytically through ML accuracy metrics. In our work
on SMIRK, we provide safety evidence that goes beyond the level of the ML
model. Related to pedestrian detection, we find that the work by Gauerhof et al
(2020) is the closest to this study, and the reader will find that we repeatedly
refer to it throughout the text.

In the current paper, not only do we present a holistic safety case build-
ing on previous work, we also present the demonstrator system under an OSS
license. In contrast to most previous work that stop at pedestrian detection,

Springer Nature 2021 BTEX template

6 Ergo, SMIRK 1is Safe

we present an ADAS that subsequently commences emergency braking in a
simulated environment. This addition responds to calls for researchers to go
from offline to online testing (Haq et al, 2021), as many safety violations iden-
tified by online testing could not be identified by offline testing. We hope
that SMIRK can contribute to a shift in the testing community away from
standalone image data sets.

3 Method

The overall frame of our work is the engineering research standard as defined
in the evolving community endeavor ACM SIGSOFT Empirical Standards
(Ralph et al, 2020). Engineering research is an appropriate standard when
evaluating technological artifacts, e.g., methods, systems, and tools — in our
case SMIRK and its safety case. To support the validity of our research, we
consulted the essential attributes of the corresponding checklist. While most
attributes are clearly addressed in this manuscript, we provide three clarifi-
cations: 1) empirical evaluations of SMIRK are done using simulation in ESI
Pro-SiVIC, 2) empirical evaluation of the safety case has been done through
workshops and peer-review, and 3) we compare the SMIRK safety case against
state-of-the-art implicitly by building on previous work. In this section, we
first present our interpretations of SOTIF and AMLAS. Second, we present
an overview of our ways of working in the development project.

3.1 Systems Development Using SOTIF

The SMIRK development followed the process in ISO 21448 Safety of the
Intended Functionality (SOTIF). SOTIF is a candidate standard under
development to complement the established automotive standard ISO 26262
Functional Safety (FuSa). While FuSa covers hazards caused by malfunction-
ing behavior, SOTIF addresses hazardous behavior caused by the intended
functionality. A system that meets FuSa can still hazardous due to insuf-
ficient environmental perception or inadequate robustness within the ODD.
The SOTIF process provides guidance on how to systematically ensure the
absence of unreasonable risk due to functional insufficiencies. The goal of the
SOTTF process is to perform a risk acceptance evaluation and then reduce the
probability of 1) known and 2) unknown scenarios causing hazardous behavior.

Figure 2 shows a simplified version of the SOTIF process. The process
starts in the upper left with A) Requirements specification. Based on the
requirements, a B) Risk Analysis is done. For each identified risk, its potential
Consequences are analyzed. If the risk of harm is reasonable, it is recorded as
an acceptable risk. If not, the activity continues with an analysis of Causes,
i.e., an identification and evaluation of triggering conditions. If the expected
system response to triggering conditions is acceptable, the SOTIF process
continues with V&V activities. If not, the remaining risk forces a C) Functional
Modification with a corresponding requirements update.

Springer Nature 2021 BTEX template

Ergo, SMIRK 1is Safe 7

A)
Requirements
Specification

Yes, no harm

[o | i
Ok?

Risk Analysis —

\ No
Causes

Ok?

l:' Engineering Activity

Engineering Decision

D Evaluation by Analysis

)
Functional
Modification

Yes

: D) Evaluation of Known
CO'}CT‘US';)" —of Verfication of Hazardous Scenarics
No e Known Unsafe .
OK? Scenarios Evaluation of Unknown

Hazardous Scenarios

Ok

Yes
E) Risks Reasonable Risks
Residual Risks Validation of
Ok? Unknown Unsafe
Scenarios

Yes, acceptablerisk

No

Fig. 2 A simplified overview of the SOTIF process. Adapted from ISO (2019).

The lower part of Figure 2 shows the V&V activities in the SOTIF pro-
cess, assuming that they are based on various levels of testing. For each risk,
the development organization conducts D) Verification to ensure that the sys-
tem satisfies the requirements for the known hazardous scenarios. If the F)
Conclusion of Verification Tests are satisfactory, the V&V activities continues
with validation. It not, the remaining risk requires a C) Functional Modifica-
tion. In the E) Validation, the development organization explores the presence
of unknown hazardous scenarios — if any are identified, they turn into known
hazardous scenarios. The H) Conclusion of Validation Tests estimates the like-
lihood of encountering unknown scenarios that lead to hazardous behavior. If
the residual risk is sufficiently small, it is recorded as an acceptable risk. If
not, the remaining risk again necessitates a C) Functional Modification.

3.2 Safety Assurance Using the AMLAS Process

Our safety assurance work is guided by a methodology for the Assurance of
Machine Learning for use in Autonomous Systems (AMLAS) developed by
the Assuring Autonomy International Programme at the University of York.
AMLAS provides an overall process and a set of safety case patterns for safety
assurance of ML components. Figure 3 shows an overview of the six stages of
AMLAS, which also provide an overall structure for this paper. Throughout
this paper, the notation [A]-[HH], in bold font, refers to 34 individual artifacts
prescribed by AMLAS. Table 13 provides an overview of how those artifacts
related to the stages of AMLAS and where in this paper they are described.
Finally, in Section 11, the 34 artifacts are used to present a complete safety
cage for the ML component in SMIRK.

The upper part of Figure 3 stresses that the development of an ML compo-
nent and its corresponding safety case is done in the context of larger systems
context. In our case, the larger context is the development of the SMIRK
ADAS, indicated by the gray arrow. The AMLAS process starts in the System

Springer Nature 2021 ETEX template

8 Ergo, SMIRK 1is Safe

ADAS Development
ML Component Development

Assurance activitites
ML Safety

‘ Assurance ’ ML
Scoping S;’;’;'_IF:

Feedback and lterate

System
Safety
Reqts

ML Reqgts.
Data Mgmt.

w

Model
Learning
Model
Verification
Model
Deployment

aseD A1vjes

N
(6]
(o)}

Fig. 3 An overview of the AMLAS process, adapted from Hawkins et al (2021). Blue color
denotes systems engineering, whereas black color relates specifically to the ML component.
Numbers refer to the AMLAS stages.

Safety Requirements, which in our case come from following the SOTIF pro-
cess. However, both SOTIF and AMLAS are iterative process, which means
that their activities are performed in parallel and their are many interdepen-
dencies — for AMLAS, the iteration is highlighted by the black arrow in the
bottom of Figure 3.

Starting from the System Safety Requirements from the left, Stage 1 is ML
Safety Assurance Scoping. This stage operates on a systems engineering
level and defines the scope of the safety assurance process for the ML compo-
nent as well as the scope of its corresponding safety case — the interplay with
the non-ML safety engineering is fundamental. The next five stages of AMLAS
all focus on assurance activities for different constituents of ML development
and operations. Each of these stages conclude with an assurance argument that
when combined, and complemented by evidence through artifacts [A]-[HH],
compose the overall ML safety case.

Stage 2 ML Safety Requirements Assurance. Requirements engineering is used
to elicit, analyze, specify, and validate ML safety requirements (Vogelsang
and Borg, 2019) in relation to the software architecture and the ODD.

Stage 3 Data Management Assurance. Requirements engineering is first used to
develop data requirements that match the ML safety requirements. Subse-
quently, data sets are generated (development data, internal test data, and
verification data) accompanied by quality assurance activities.

Stage 4 Model Learning Assurance. The ML model is trained using the devel-
opment data. The fulfilment of the ML safety requirements is assessed using
the internal test data.

Stage 5 Model Verification Assurance. Different levels of testing or formal ver-
ification to assure that the ML model meets the ML safety requirements.

Stage

Springer Nature 2021 BTEX template

Ergo, SMIRK 1is Safe 9

lﬁ'j Individual review . Directly Safety-Related

ﬁ‘gl’i Group activity Indirectly Safety-Related

Peer-

s B) D) Fagan
\ HARA / Inspections
T V&V ML review .
® = E Th
A) ﬁ‘ 6 ©) @ lﬁoﬂ) and Safety 114! o

Prototyping 'Yy Functional Case
MYEVER Development —— Modifications
/ L
e ——— o0
AMLAS

Fig. 4 An overview of the SMIRK development in the SMILE III project.

Most importantly, the ML model shall be tested on verification data that
has not influenced the training in any way.

6 Model Deployment Assurance. Integrate the ML model in the overall
system and verify that the system safety requirements are satisfied. Conduct
integration testing in the specified ODD.

The rightmost part of Figure 3 shows the overall safety case for the sys-
tem under development with the argumentation for the ML component as
an essential part, i.e., the target of the AMLAS process. The AMLAS argu-
mentation patterns are presented using the graphical format Goal Structuring
Notation (GSN) (Assurance Case Working Group, 2021). All semantics used
in the figures in Section 11 are defined in this open standard.

3.3 SMIRK Development in the SMILE III Project

Figure 4 shows an overview of the two-year development project (SMILE III)
that resulted in the SMIRK MVP (Minimum Viable Product) and the safety
case for its ML component. Starting from the left, we relied on A) Prototyping
to get an initial understanding of the problem and solution domain (Képyaho
and Kauppinen, 2015). As our pre-understanding during prototyping grew,
SOTIF and AMLAS were introduced as fundamental development processes
and we established a first System Requirements Specification (SRS).

Based on the SRS, we organized a B) Hazard Analysis and Risk Assessment
(HARA) workshop (cf. ISO 262626) with all author affiliations represented.
Then, the iterative C) SMIRK development phase commenced, encompass-
ing both software development, ML development, and a substantial amount
of documentation. When meeting our definition of done, i.e., an MVP imple-
mentation and stable requirements specifications, we conducted D) Fagan
Inspections as described in Section 3.3.1. After corresponding updates, we
baselined the SRS and the Data Management Specification (DMS). Note that
due to the Covid-19 pandemic, all group activities were conducted in virtual
settings.

Subsequently, the development project turned to E) V&V and Functional
Modifications as limitations were identified. In line with the SOTIF process

Springer Nature 2021 BTEX template

10 Ergo, SMIRK 1is Safe

(cf. Figure 2), also this phase of the project was iterative. The various V&V
activities generated a significant part of the evidence that supports our safety
argumentation. The rightmost part of Figure 4 depicts the safety case for the
ML component in SMIRK, which is peer-reviewed as part of the submission
process of this paper.

3.3.1 Fagan Inspections

We conducted two formal Fagan inspections (Fagan, 1976) during the
SMILE III project with representatives from the organizations listed as co-
authors of this paper. All reviewers are active in automotive R&D. The
inspections targeted the Software Requirements Specification and the Data
Management Specification, respectively. The two formal inspections constitute
essential activities in the AMLAS safety assurance and result in ML Safety
Requirements Validation Results [J] and a Data Requirements Justification
Report [M]. A Fagan inspection consists of the steps 1) Planning, 2) Overview,
3) Preparation, 4) Inspection meeting, 5) Rework, and 6) Follow-up.

1. Planning: The authors prepared the document and invited the required
reviewers to an inspection meeting.

2. Overview: During one of the regular project meetings, the lead authors
explained the fundamental structure of the document to the reviewers, and
introduced an inspection checklist, available on GitHub. Reviewers were
assigned particular inspection perspectives based on their individual exper-
tise. All information was repeated in an email, as not all reviewers were
present at the meeting.

3. Preparation: All reviewers conducted an individual inspection of the
document, noting any questions, issues, and required improvements.

4. Inspection meeting: Two weeks after the individual inspections were initi-
ated, the lead authors and all reviewers met for a virtual meeting. The entire
document was discussed, and the findings from the independent inspections
were compared. All issues were compiled in inspection protocols that can
be found on GitHub.

5. Rework: The lead authors updated the SRS according to the inspection
protocol. The independent inspection results were used as input to capture-
recapture techniques to estimate the remaining amount of work (Petersson
et al, 2004). All changes are traceable through individual GitHub commits.

6. Follow-up: Selected reviewers verified that the previously found issues had
been correctly resolved.

4 SMIRK System Description [C]

SMIRK is a pedestrian automatic emergency braking (PAEB) system that
relies on machine learning (ML). As an example of an advanced driver-
assistance system (ADAS), SMIRK is intended to act as one of several systems
supporting the driver in the dynamic driving task, i.e., all the real-time oper-
ational and tactical functions required to operate a vehicle in on-road traffic.

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 11

SMIRK, including the accompanying safety case, is developed with full trans-
parency under an open-source software (OSS) license. We develop SMIRK as
a demonstrator in a simulated environment provided by ESI Pro-SiVIC — we
stress that SMIRK shall never be used in a real vehicle and take the authors
take no responsibility in any such endeavors.

The SMIRK product goal is to assist the driver on country roads in rural
areas by performing emergency braking in the case of an imminent collision
with a pedestrian. The level of automation offered by SMIRK corresponds to
SAE Level 1 — Driver Assistance, i.e., “the driving mode-specific execution by
a driver assistance system of either steering or acceleration/deceleration.” —
in our case only braking. However, SMIRK is developed with evolvability in
mind, thus future versions might include steering and thus comply with SAE
Level 2. The first release of SMIRK is an MVP, i.e., an implementation limited
to a highly restricted ODD.

Sections 4 and 5 presents the core parts of the SMIRK SRS. The SRS, as
well as this section, largely follows the structure proposed in IEEE 830-1998 —
IEEE Recommended Practice for Software Requirements Specifications (IEEE,
1998) and the template provided by Wiegers (2008). To support readability,
this section presents a SMIRK overview whereas Section 5 specifies the system
requirements.

4.1 Product Scope

SMIRK is designed to send a brake signal when a collision with a pedestrian
is imminent. Figure 5 illustrates the overall function provided by SMIRK.
SMIRK shall commence emergency braking if collision with a pedestrian is
imminent. Pedestrian are expected to cross the road at arbitrary angels, includ-
ing perpendicular movement and moving in the toward or away from the car.
Furthermore, a stationary pedestrian on the road must also trigger emergency
braking, i.e., a scenario known to be difficult for some pedestrian detection
systems. Finally, Figure 5 stresses that SMIRK must be robust against false
positives, also know as “braking for ghosts.” Trajectories are illustrated with
blue arrows accompanied by a speed (v) and possibly an angle (6). In the super-
script, ¢ and p denote car and pedestrian, respectively, and 0 in the subscript
indicates initial speed.

SMIRK is an ADAS that is intended to co-exist with other ADAS in a
vehicle. We assume that sensors and actuators will be shared among different
systems. SMIRK currently implements its own perception system based on
radar and camera input. In future versions, it is likely that a central perception
system operating on the vehicle will provide reliable input to SMIRK. This
is not yet the case for the SMIRK MVP and this version of the SRS does
not specify any requirements related to shared resources. The SMIRK scope
is further explained through the context diagram in Section 2.1.

Figure 6 shows the SMIRK context diagram. The sole purpose of SMIRK
is PAEB. The design of SMIRK assumes that it will be deployed in a vehicle

Springer Nature 2021 BTEX template

12 Ergo, SMIRK 1is Safe

Fig. 5 Example scenario with a pedestrian crossing the road at an arbitrary angle. A false
positive is also presented, i.e., a ghost.

with complementary ADAS, e.g., large animal detection, lane keeping assis-
tance, and various types of collision avoidance (cf. “Other ADAS 1 - N”). We
also expect that sensors and actuators will be shared between ADAS. For the
SMIRK MVP, however, we do not elaborate any further on ADAS co-existence
and we do not adhere to any particular higher-level automotive architecture. In
the same vein, we do not assume a central perception system that fuses various
types of sensor input for individual ADAS such as SMIRK to use. SMIRK uses
a standalone ML model trained for pedestrian detection and recognition. In
the SMIRK terminology, to mitigate confusion, the radar detects objects and
the ML-based pedestrian recognition component identifies potential pedestri-
ans in the camera input. Solid lines in the figure show how SMIRK interacts
with sensors and actuators in the ego car. Dashed lines indicate how other
ADAS might use sensors and actuators.

Product development inevitably necessitates quality trade-offs. While we
have not conducted a systematic quality requirements prioritization, such as
an analytical hierarchy process workshop (Kassab and Kilicay-Ergin, 2015),
this section shares our general aims with SMIRK. The software product quality
model defined in the ISO/IEC 25010 standard consists of eight characteristics.
Furthermore, as recommend in requirements engineering research (Horkoff,
2019), we add the two novel quality characteristics explainability and fair-
ness. For each characteristic, we share how important it is considered during
the development and assign it a low, medium or high priority. Our prior-
ities influence architectural decisions in SMIRK and support elicitation of
architecturally significant requirements (Chen et al, 2012).

¢ Functional suitability. No matter how functionally restricted the SMIRK
MVP is, it must meet the stated and implied needs of a prototype ADAS.
This quality characteristic is fundamentally important. [High priority]

® Performance efficiency. When deployed in the simulated environment,
SMIRK must be able to process input, conduct ML inference, and possibly

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 13

commence emergency braking in realistic driving scenarios. As a real-time
system, SMIRK must be sufficiently fast and finding when performance
efficiency reached excessive levels is vital in the requirements engineering
process. [Medium priority]

¢ Compatibility. A product goal is to make SMIRK compatible with other
ADAS. So far we have not explored this further, thus this is primarily an
ambition beyond the MVP development. [Low priority]

e Usability. SMIRK is an ADAS that operates in the background and ideally
never intervenes in the dynamic driving task. SMIRK does not have a user
interface for the direct driver interaction. [Low priority]

¢ Reliability. A top priority in the SMIRK development that motivates the
application of AMLAS. Note, however, that safety is not covered in the
ISO/IEC 25010 product quality model but in its complementary quality-in-
use model. [High priority]

® Security. Not prioritized in the SMIRK MVP. SOTIF is limited to “reason-
ably foreseeable misuse” but does not address antagonistic attacks. While
safety and security shall be co-engineered, we leave this quality characteristic
as future work. [Low priority]

¢ Maintainability. As mentioned in Section 1.1 Purpose, evolvability from
the SMIRK MVP is a key concern. Consequently, maintainability is impor-
tant, although not more important than functional suitability and reliability.
[Medium priority]

¢ Portability. We aim to develop SMIRK in a manner that allows porting the
ADAS to both other simulated environments and to physical demonstration
platforms in future projects. We consider this quality characteristic during
the SMIRK development, but it is not a primary concern. [Low priority]

¢ Explainability. Explainability is an important characteristic for any cyber-
physical system, but the challenge grows with the introduction of DNNs.
There is considerable research momentum on “Explainable AI” and we
expect that new findings will be applicable to SMIRK. For the MVP devel-
opment, however, our explainability focus is restricted to the auditability
resulting in following AMLAS. [Medium priority]

¢ Fairness. Obviously a vital quality characteristic for a PAEB ADAS that
primarily impacts the data requirements specified in the Data Manage-
ment Specification. We have elaborated on SMIRK fairness in a previous
study (Borg et al, 2021b). [High priority]

4.2 Product Functions

SMIRK comprises implementations of four algorithms and uses external vehicle
functions. In line with SOTIF, we organize all constituents into the categories
sensors, algorithms, and actuators.

e Sensors

Springer Nature 2021 BTEX template

14 Ergo, SMIRK 1is Safe

Ego vehicle
Radar Camera Brakes
L 3 x
— L3 SMIRK
/O O\\\.
S P
—
~— Other | | Other
Driver ADAS 1 ADAS N
¥ ¥
Sensor 1 Sensor N Actuator 1 |-+ | Actuator N

Fig. 6 SMIRK context diagram.

— Radar detection and tracking of objects in front of the vehicle (see
Section 6.1).
— A forward-facing mono-camera (see Section 6.1).

e Algorithms

— Time-to-collision (TTC) calculation for objects on collision course.

Pedestrian detection and recognition based on the camera input where

the radar detected an object (see Section 8.1).

— Out-Of-distribution (OOD) detection of never-seen-before input (part of
the safety cage mechanism, see Section 8.3).

— A braking module that commences emergency braking. In the MVP,
maximum braking power is always used.

® Actuators
— Brakes (provided by ESI Pro-SiVIC, not elaborated further).

Figure 7 illustrates detection of a pedestrian on a collision course, i.e.,
PAEB shall be commenced. The ML-based functionality of pedestrian detec-
tion and recognition, including the corresponding OOD detection, is embedded
in the Pedestrian Recognition Component (defined in Section 6.1).

5 SMIRK System Requirements

This section specifies the SMIRK system requirements, organized into system
safety requirements and ML safety requirements. ML safety requirements are
further refined into performance requirements and robustness requirements.
The requirements are largely re-purposed from the system for pedestrian detec-
tion at crossings described by Gauerhof et al (2020) to our PAEB ADAS, thus
allowing for comparisons to previous work within the research community.

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 15

Fig. 7 Illustrative example of pedestrian detection that shall trigger emergency braking.

5.1 System Safety Requirements [A]

¢ SYS-SAF-REQ1 SMIRK shall commence automatic emergency braking if
and only if collision with a pedestrian on collision course is imminent.

Rationale: This is the main purpose of SMIRK. If possible, ego car will
stop and avoid a collision. If a collision is inevitable, ego car will reduce speed
to decrease the impact severity. Hazards introduced from false positives, i.e.,
braking for ghosts, are mitigated under ML Safety Requirements.

5.2 Safety Requirements Allocated to ML Component [E]

Based on the HARA (see Section 3.3), two categories of hazards were identified.
First, SMIRK might miss pedestrians and fail to commence emergency braking
- we refer to this as a missed pedestrian. Second, SMIRK might commence
emergency braking when it should not - we refer to this as an instance of ghost
braking.

e Missed pedestrian hazard: The severity of the hazard is very high (high risk
of fatality). Controllability is high since the driver can brake ego car.

e Ghost braking hazard: The severity of the hazard is high (can be fatal). Con-
trollability is very low since the driver would have no chance to counteract
the braking.

To conclude, we refine SYS-SAF-REQ1 in the next section to specify
requirements in relation to the missed pedestrian hazard. Furthermore, the
ghost braking hazard necessitates the introduction of SYS-ML-REQ?2.

5.3 Machine Learning Safety Requirements [H]

This section refines SYS-SAF-REQ into two separate requirements corre-
sponding to missed pedestrians and ghost braking, respectively.

Springer Nature 2021 BTEX template

16 Ergo, SMIRK 1is Safe

¢ SYS-ML-REQ1. The pedestrian recognition component shall identify
pedestrians in all valid scenarios when the radar tracking component returns
a TTC < 4s for the corresponding object.

¢ SYS-ML-REQ2 The pedestrian recognition component shall reject false
positive input that does not resemble the training data.

Rationale: SYS-SAF-REQ1 is interpreted in light of missed pedestrians
and ghost braking and then broken down into the separate ML safety require-
ments SYS-ML-REQ1 and SYS-ML-REQ2. The former requirement deals
with the “if” aspect of SYS-SAF-REQ1 whereas its “and only if” aspect
is targetted by SYS-SAF-REQ2. SMIRK follows the reference architecture
from Ben Abdessalem et al (2016) and SYS-ML-REQ1 uses the same TTC
threshold (4 seconds, confirmed with the original authors). Moreover, we have
confirmed that the TTC threshold is valid for SMIRK in its ODD based on
calculating braking distances. SYS-ML-REQ2 motivates the primary contri-
bution of the SMILE III project, i.e., an OOD detection mechanism that we
refer to as a safety cage.

5.3.1 Performance Requirements

The performance requirements are specified with a focus on quantitative tar-
gets for the pedestrian recognition component. All requirements below are
restricted to pedestrians on or close to the road.

For objects detected by the radar tracking component with a TTC < 4s,
the following requirements must be fulfilled:

e SYS-PER-REQ1 The pedestrian recognition component shall identify
pedestrians with an accuracy of 93% when they are within 80 m.

e SYS-PER-REQ2 The false negative rate of the pedestrian recognition
component shall not exceed 7% within 50 m.

e SYS-PER-REQ3 The false positives per image of the pedestrian recogni-
tion component shall not exceed 0.1% within 80 m.

¢ SYS-PER-REQ4 In 99% of sequences of 5 consecutive images from a 10
FPS video feed, no pedestrian within 80 m shall be missed in more than
20% of the frames.

e SYS-PER-REQ5 For pedestrians within 80 m, the pedestrian recognition
component shall determine the position of pedestrians within 50 cm of their
actual position.

e SYS-PER-REQG6 The pedestrian recognition component shall allow an
inference speed of at least 10 FPS in the ESI Pro-SiVIC simulation.

Rationale: SMIRK adapts the performance requirements specified
by Gauerhof et al (2020) for the SMIRK ODD. SYS-PER-REQ]1 reuses the
accuracy threshold from Example 7 in AMLAS. SYS-PER-REQ2 and SYS-
PER-REQ3 are two additional requirements inspired by Henriksson et al
(2019). Note that SYS-PER-REQ3 relies on the metric false positive per
image rather than false positive rate as true negatives do not exist for object

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 17

detection (further explained in Section 9.1 and discussed in Section 12). SY'S-
PER-REQG6 means that any further improvements to reaction time have a
negligible impact on the total brake distance.

5.3.2 Robustness Requirements

Robustness requirements are specified to ensure that SMIRK performs ade-
quately despite expected variations in input. For pedestrians present within
50 m of Ego, captured in the field of view of the camera:

e SYS-ROB-REQ1 The pedestrian recognition component shall perform as
required in all situations Ego may encounter within the defined ODD.

e SYS-ROB-REQ2 The pedestrian recognition component shall identify
pedestrians irrespective of their upright pose with respect to the camera.

e SYS-ROB-REQ3 The pedestrian recognition component shall identify
pedestrians irrespective of their size with respect to the camera.

e SYS-ROB-REQ4 The pedestrian recognition component shall identify
pedestrians irrespective of their appearance with respect to the camera.

Rationale: SMIRK reuses robustness requirements for pedestrian detection
from previous work. SYS-ROB-REQ1 is specified in Gauerhof et al (2020).
SYS-ROB-REQ2 is presented as Example 7 in AMLAS, which has been
limited to upright poses, i.e., SMIRK is not designed to work for pedestrians
sitting or lying on the road. SYS-ROB-REQ3 and SYS-ROB-REQ4 are
additions identified during the Fagan inspection of the System Requirements
Specification (see Section 3.3.1).

5.4 Operational Design Domain [B]

This section briefly describes the SMIRK ODD. As the complete ODD spec-
ification, based on the taxonomy developed by NHTSA (Thorn et al, 2018),
is lengthy, we only present the fundamental aspects in this section. We refer
interested readers to the GitHub repository. Note that we deliberately spec-
ified a minimalistic ODD, i.e., ideal conditions, to allow the development a
complete safety case for the SMIRK MVP.

® Physical infrastructure Asphalt single-lane roadways with clear lane
markings and a gravel shoulder. Rural settings with open green fields.

e Operational constraints Maximum speed of 70 km/h and no surrounding
traffic.

® Objects No objects except 0-1 pedestrians, either stationary or moving with
a constant speed (< 15 km/h) and direction.

¢ Environmental Conditions Clear daytime weather with overhead sun.
Headlights turned off.

Springer Nature 2021 BTEX template

18 Ergo, SMIRK 1is Safe

6 SMIRK System Architecture

SMIRK is a pedestrian emergency braking ADAS that demonstrates safety-
critical ML-based driving automation on SAE Level 1. The system uses input
from two sensors (camera and radar/LiDAR), implements a deep neural net-
work trained for pedestrian detection and recognition. If the radar detects an
imminent collision between the ego car and an object, SMIRK will evaluate if
the object is a pedestrian. If SMIRK is confident that the object is a pedes-
trian, it will apply emergency braking. To minimize hazardous false positives,
SMIRK implements a SMILE safety cage to reject input that is OOD. To
ensure industrial relevance, SMIRK builds on the reference architecture from
PeVi, an ADAS studied in previous work Ben Abdessalem et al (2016).

Based on a stakeholder analysis in the SMILE III project, this architecture
description considers the following stakeholders:

® Researchers who want to study the design of SMIRK.

® Safety assessors who want to investigate the general design in the light of
the safety case.

e Software developers building or evolving SMIRK.

e ML developers designing and tuning the ML perception model.

e Hardware developers interested in the SMIRK sensors, incl. replacing them
or adding sensor fusion.

® Simulator developers looking for ways to port SMIRK to their virtual
prototyping environments.

® Testers developing test plans for SMIRK.

® System integrators who are about to include SMIRK in other systems, incl.
co-existence with other ADAS.

Explicitly defined architecture viewpoints support effective communication
of certain aspects and layers of a system architecture. The different viewpoints
of the identified stakeholders are covered by the established 4+1 view of archi-
tecture by Kruchten (1995). The 441 view model supports documentation
and communication of software-intensive systems. The model is a generic tool
that does not restrict its users in terms of notations, tools or design methods.
For SMIRK, we describe the logical view using a simple illustration with lim-
ited embedded semantics complemented by textual explanations. The process
view is presented through a bulleted list, whereas the interested reader can
find the remaining parts in the GitHub repository (RISE Research Institutes
of Sweden, 2022). Scenarios are illustrated with figures and explanatory text.

6.1 Logical View

The SMIRK logical view is constituted by a description of the entities that
realize the PAEB. Figure 8 provides a graphical depiction.

SMIRK interacts with three external resources, i.e., hardware sensors and
actuators in ESI Pro-SiVIC: A) Mono Camera (752x480 (WVGA), sensor
dimension 3.13 ¢cm x 2.00 cm, focal length 3.73 cm, angle of view 45 degrees),

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 19

Sgﬂware Pyth on

Safety Cage

Trained

Rule Engine sofware | Machine Learning

signature
Radar Logic

2

TTC<4s sanity_check True / False Hardware / ESI Pro-SiviC
image, Simulator
Perception signature Uncertainty
e Orchestrator ' Manager
collision_with_pedestrian_imminent
is_pedestrian(image) True / False is_OOD(image) ’True / False brake
Pedestrian Anomaly Brake
Detector Detector Manager

Fig. 8 SMIRK logical view.

B) Radar unit (providing object tracking and relative lateral and longitudinal
speeds), and C) Ego Car (An Audi A4 for which we are mostly concerned with
the brake system). SMIRK consists of the following constituents. We refer to
E), F), G),I), and J) as the Pedestrian Recognition Component, i.e., the
ML-based component for which this study presents a safety case.

® Software components implemented in Python:

- D) Radar Logic (calculating TTC based on relative speeds)

— E) Perception Orchestrator (the overall perception logic)

F) Rule Engine (part of the safety cage, implementing heuristics such as

pedestrians do not fly in the air)

— G) Uncertainty Manager (main part of the safety cage, implementing logic
to avoid false positives)

— H) Brake Manager (calculating and sending brake signals to the ego car)

® Trained Machine Learning models:

— 1) Pedestrian Detector (a YOLOv5 model trained using PyTorch?
— J) Anomaly Detector (an autoencoder provided by Seldon*)

6.2 Process View

The process view deals with the dynamic aspects of SMIRK including an
overview of the run time behavior of the system. The overall SMIRK flow is
as follows:

1. The Radar detects an object and sends the signature to the Radar Logic
class.

2. The Radar Logic class calculates the TTC. If a collision between the ego
car and the object is imminent, i.e., TTC is less than 4 seconds assuming
constant motion vectors, the Perception Orchestrator is notified.

3https://pytorch.org/
“https://www.seldon.io/

https://pytorch.org/
https://www.seldon.io/

Springer Nature 2021 BTEX template

20 Ergo, SMIRK 1is Safe

3. The Perception Orchestrator forwards the most recent image from the
Camera to the Pedestrian Detector to evaluate if the detected object is a
pedestrian.

4. The Pedestrian Detector performs a pedestrian detection in the image and
returns the verdict (True/False) to the Pedestrian Orchestrator.

5. If there appears to be a pedestrian on a collision course, the Pedestrian
Orchestrator forwards the image and the radar signature to the Uncertainty
Manager in the safety cage.

6. The Uncertainty Manager sends the image to the Anomaly Detector and
requests an analysis of whether the camera input is OOD or not.

7. The Anomaly Detector analyzes the image in the light of the training data
and returns its verdict (True/False).

8. If there indeed appears to be an imminent collision with a pedestrian, the
Uncertainty Manager all available information is forwarded to the Rule
Engine for a sanity check.

9. The Rule Engine does a sanity check based on heuristics, e.g., in relation
to laws of physics, and returns a verdict (True/False).

10. The Uncertainty Manager aggregates all information and, if the confidence
is above a threshold, notifies the Brake Manager that collision with a
pedestrian is imminent.

11. The Brake Manager calculates a safe brake level and sends the signal to
Ego Car to commence PAEB.

7 SMIRK Data Management Specification

This section describes the overall approach to data management for SMIRK
and the explicit data requirements. SMIRK is a demonstrator for a simu-
lated environment. Thus, as an alternative to longitudinal traffic observations
and consideration of accident statistics, we have analyzed the SMIRK ODD
through the ESI Pro-SiVIC “Object Catalog.” We conclude that the demo-
graphics of pedestrians in the ODD is constituted of the following: adult males
and females in either casual, business casual, or business casual clothes, young
boys wearing jeans and a sweatshirt, and male road workers. As other traffic
is not within the ODD (e.g., cars, motorcycles, and bicycles), we consider the
following basic shapes from the object catalog to as examples of OOD objects
(that still can appear in the ODD) for SMIRK to handle in operation: boxes,
cones, pyramids, spheres, and cylinders.

7.1 Data Requirements [L]

This section specifies requirements on the data used to train and test the pedes-
trian recognition component. The data requirements are specified to comply
with the ML Safety Requirements in the System Requirements Specification.
All data requirements are organized according to the assurance-related desider-
ata proposed by Ashmore et al (2021), i.e., the key assurance requirements
that ensure that the data set is relevant, complete, balanced, and accurate.

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 21

Table 1 Requirements-Data traceability matrix.

Data Requirements per Assurance Desiderata

Relevant Complete Balanced Accurate
|8 (E|8 B E | ¥ || 2|¢ 8|8 ¥ | & | g2 | |d &
¥ B|E|E BB P3|8|53/3/8(8355(8(¢2|¢e¢
ElE|E|E|E[E|lE|E|E|RE|E|E|[E & = e e

< <
&|8|8|8|8|8 |53 |8|8|8|8/&8|8|8|5|8|8|5]|3
SYS-ML-REQ1 | X X X X X X X X X X X X X X X X X X
Safety
SYS-ML-REQ2 X X X X
7}
© SYS-PER-REQ1 X | x| x| x|x
E SYS-PER-REQ2 X
=
g SYS-PER-REQ3 X X X X X X X
4 Performance
o SYS-PER-REQ4 Not related to the data requirements
=
seeemeeal | | [[[[| [[] [x[| [] [x[x]x
i}
— SYS-PER-REQ6 Not related to the data requirements
[}
'E SYS-ROB-REQ1 X X X X X X X
G
2 SYS-ROB-REQ2 x| x [x| x| x| x| x
Robustness
SYS-ROB-REQ3 X X X X X X X
SYS-ROB-REQ4 X X X X X X X

Table 1 shows a requirements traceability matrix between ML safety
requirements and data requirements. The matrix presents an overview of
how individual data requirements contribute to the satisfaction of ML Safety
Requirements. Entries in individual cells denote that the ML safety require-
ment is addressed, at least partly, by the corresponding data requirement.
SYS-PER-REQ4 and SYS-PER-REQ6 are not related to the data require-
ments.

7.1.1 Desideratum: Relevant

This desideratum considers the intersection between the data set and the
supported dynamic driving task in the ODD. The SMIRK training data will
not cover operational environments that are outside of the ODD, e.g., images
collected in heavy snowfall.

e DAT-REL-REQ1 All data samples shall represent images of a road from
the perspective of a vehicle.

¢ DAT-REL-REQ2 The format of each data sample shall be representative
of that which is captured using sensors deployed on the ego car.

e DAT-REL-REQ3 Each data sample shall assume sensor positioning
representative of the positioning used on the ego car.

e DAT-REL-REQ4 All data samples shall represent images of a road
environment that corresponds to the ODD.

e DAT-REL-REQ5 All data samples containing pedestrians shall include
one single pedestrian.

e DAT-REL-REQ6 Pedestrians included in data samples shall be of a type
that may appear in the ODD.

Springer Nature 2021 BTEX template

22 Ergo, SMIRK 1is Safe

e DAT-REL-REQ7 All data samples representing non-pedestrian OOD
objects shall be of a type that may appear in the ODD.

Rationale: SMIRK adapts the requirements from the Relevant desiderata
specified by Gauerhof et al (2020) for the SMIRK ODD. DAT-REL-REQ5
is added based on the corresponding fundamental restriction of the ODD of
the SMIRK MVP. DAT-REL-REQ?7 restricts data samples providing OOD
examples for testing.

7.1.2 Desideratum: Complete

This desideratum considers the sampling strategy across the input domain and
its subspaces. Suitable distributions and combinations of features are particu-
larly important. Ashmore et al (2021) refer to this as the external perspective
on the data.

e DAT-COM-REQ1 The data samples shall include the complete range of
environmental factors within the scope of the ODD.

e DAT-COM-REQ2 The data samples shall include images representing all
types of pedestrians according to the demographics of the ODD.

e DAT-COM-REQ3 The data samples shall include images representing
pedestrians paces from standing still up to running at 15km/h.

e DAT-COM-REQ4 The data samples shall include images representing all
angles an upright pedestrian can be captured by the given sensors on the
ego car.

e DAT-COM-REQ5 The data samples shall include images representing all
distances to crossing pedestrians from 10 m up to 100 m away from ego car.

e DAT-COM-REQG6 The data samples shall include examples with different
levels of occlusion giving partial views of pedestrians crossing the road.

e DAT-COM-REQT The data samples shall include a range of examples
reflecting the effects of identified system failure modes.

Rationale: SMIRK adapts the requirements from the Complete desider-
ata specified by Gauerhof et al (2020) for the SMIRK ODD. We deliberately
replaced the original adjective “sufficient” to make the data requirements more
specific. Furthermore, we add DAT-COM-REQ3 to cover different poses
related to the pace of the pedestrian and DAT-COM-REQA4 to cover different
observation angles.

7.1.3 Desideratum: Balanced

This desideratum considers the distribution of features in the data set, e.g.,
the balance between the number of samples in each class. Ashmore et al (2021)
refer to this as an internal perspective on the data.

e DAT-BAL-REQ1 The data set shall have a representation of samples
for each relevant class and feature that ensures Al fairness with respect to
gender.

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 23

e DAT-BAL-REQ2 The data set shall have a representation of samples for
each relevant class and feature that ensures Al fairness with respect to age.

e DAT-BAL-REQ3 The data set shall contain both positive and negative
examples.

Rationale: SMIRK adapts the requirements from the Balanced desiderata
specified by Gauerhof et al (2020) for the SMIRK ODD. The concept of Al
fairness is to be interpreted in the light of the Ethics guidelines for trust-
worthy AI published by the European Commission (High-Level Expert Group
on Artificial Intelligence, 2019). Note that the number of ethical dimensions
that can be explored in through the ESI Pro-SiVIC object catalog is limited
to gender (DAT-BAL-REQ1) and age (DAT-BAL-REQ2). Moreover, the
object catalog does only contain male road workers and all children are boys.
Furthermore, DAT-BAL-REQ3 is primarily included to align with Gauerhof
et al (2020) and to preempt related questions by safety assessors. In practice,
the concept of negative examples when training object detection models are
typically satisfied implicitly as the parts of the images that do not belong to
the annotated class are true negatives (further explained in Section 9.1).

7.1.4 Desideratum: Accurate

This desideratum considers how measurement issues can affect the way that
samples reflect the intended ODD, e.g., sensor accuracy and labeling errors.

e DAT-ACC-REQ1: All bounding boxes produced shall include the entirety
of the pedestrian.

e DAT-ACC-REQ2: All bounding boxes produced shall be no more than
10% larger in any dimension than the minimum sized box capable of
including the entirety of the pedestrian.

e DAT-ACC-REQ3: All pedestrians present in the data samples shall be
correctly labeled.

Rationale: SMIRK reuses the requirements from the Accurate desiderata
specified by Gauerhof et al (2020).

7.2 Data Generation Log [Q]

This section describes how the data used for training the ML model in the
pedestrian recognition component was generated. Based on the data require-
ments, we generate data using ESI Pro-SIVIC. The data are split into three
sets in accordance with AMLAS.

® Development data: Covering both training and validation data used by
developers to create models during ML development.

e Internal test data: Used by developers to test the model.

e Verification data: Used in the independent test activity when the model is
ready for release.

Springer Nature 2021 BTEX template

24 Ergo, SMIRK 1is Safe

The SMIRK data collection campaign focuses on generation of annotated
data in ESI Pro-SiVIC. All data generation is script-based and fully repro-
ducible. The following two lists present the scripts used to play scenarios and
capture the corresponding annotated data. The first section describes positive
examples [PX], i.e., humans that shall be classified as pedestrians. The sec-
ond section describes examples that represent OOD shapes [NX], i.e., objects
that shall not initiate PAEB in case of an imminent collision. These images,
referred to as OOD examples, shall either not be recognized as a pedestrian
or be rejected by the safety cage (see Section 8.3).

For each listed item, there is a link to a YAML configuration file that
is used by the Python script that generates the data in the ESI Pro-SiVIC
output folder “Sensors.” Ego car is always stationary during data collection,
and pedestrians and objects move according to specific configurations. Finally,
images are sampled from the camera at 10 frames per second with a resolution
of 7522480 pixels. For each image, we add a separate image file containing the
ground truth pixel-level annotation of the position of the pedestrian.

In total, we generate data representing 8x616 = 4,928 execution scenarios
with positive examples and 5240 = 200 execution scenarios with OOD exam-
ples. In total, the data collection campaign generates roughly 185 GB of image
data, annotations, and meta-data (including bounding boxes).

7.2.1 Positive Examples

We generate positive examples from humans with eight visual appearances (see
the upper part of Figure 9) available in the ESI Pro-SiVIC object catalog.

P1 Casual female pedestrian

P2 Casual male pedestrian

P3 Business casual female pedestrian
P4 Business casual male pedestrian
P5 Business female pedestrian

P6 Business male pedestrian

P7 Child

P8 Male construction worker

Each configuration file for positive examples specify the execution of 616
scenarios in ESI Pro-SiVIC. The configurations are organized into four groups
(A-D). The pedestrians always follow rectilinear motion (a straight line) at a
constant speed during scenario execution. Groups A and B describe pedestrians
crossing the road, either from the left (Group A) or from the right (Group
B). There are three variation points, i.e., 1) the speed of the pedestrian, 2)
the angle at which the pedestrian crosses the road, and 3) the longitudinal
distance between ego car and the pedestrian’s starting point. In all scenarios,
the distance between the starting point of the pedestrian and the edge of the
road is 5 m.

e A. Crossing the road from left to right (280 scenario configurations)

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 25

— Speed (m/s): [1, 2, 3, 4]
— Angle (degree): [30, 50, 70, 90, 110, 130, 150]
— Longitudinal distance (m): [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

e B. Crossing the road from right to left (280 scenario configurations)

— Speed (m/s): [1, 2, 3, 4]
— Angle (degree): [30, 50, 70, 90, 110, 130, 150]
— Longitudinal distance (m): [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

Groups C and D describe pedestrians moving parallel to the road, either
toward ego car (Group C) or away (Group D). There are two variation points,
i.e., 1) the speed of the pedestrian and 2) an offset from the road center. The
pedestrian always moves 90 m, with a longitudinal distance between ego car
and the pedestrian’s starting point of 100 m for Group C (towards) and 10 m
for Group D (away).

e C. Movement parallel to the road toward ego car (28 scenario configurations)

— Speed (m/s): [1, 2, 3, 4]
— Lateral offset (m): [-3, -2, -1, 0, 1, 2, 3]

¢ D. Movement parallel to the road away from ego car (28 scenario configura-
tions)

— Speed (m/s): [1, 2, 3, 4]
— Lateral offset (m): [-3, -2, -1, 0, 1, 2, 3]

7.2.2 Out-of-Distribution Examples

We generate OOD examples using five basic shapes available in the ESI Pro-
SiVIC object catalog. The OOD examples, visualized in the lower part of
Figure 9, are:

N1 Sphere
N2 Cube
N3 Cone
N4 Pyramid
N5 Cylinder

All four configuration files for OOD examples specify the execution of 10
scenarios in EST Pro-SiVIC. The configurations represent a basic shape crossing
the road from the left or right at an angle perpendicular to the road. Since
basic shapes are not animated, we fix the speed at 4 m/s. In all scenarios, the
distance between the starting point of the basic shape and the edge of the road
is 5 m. The only variation point is the longitudinal distance between ego car
and the objects’ starting point. The objects always follow rectilinear motion
(a straight line) at a constant speed during scenario execution.

¢ Longitudinal distance (m): [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

Springer Nature 2021 BTEX template

26 Ergo, SMIRK is Safe

Fig. 9 Visual appearance of pedestrians (P1-P8) and basic shapes (N1-N5).

7.2.3 Preprocessing and Data Splitting

As the SMIRK data collection campaign relies on data generation in ESI
Pro-SiVIC, the need for pre-processing differs from counterparts using natural-
istic data. To follow convention, we refer to the data processing between data
collection and model training as pre-processing — although post-processing
would be a more accurate term for the SMIRK development. We have devel-
oped scripts that generate data sets representing the scenarios listed in
Sections 7.2.1 and 7.2.2. The scripts ensure that the crossing pedestrians and
objects appear at the right distance with specified conditions and with con-
trolled levels of occlusion. All output images share the same characteristics,
thus no normalization is needed.

SMIRK includes a script to generate bounding boxes for training the object
detection model. ESI Pro-SiVIC generates ground truth image segmentation
on a pixel-level. The script is used to convert the output to the appropriate
input format for model training.

The development data contains images with no pedestrians, in line with the
description of “background images” in the YOLOvV5 training tips provided by
Ultralytics®. Background images have no objects for the model to detect, and
are added to reduce FPs. Ultralytics recommends 0-10% background images
to help reduce FPs and reports that the fraction of background images in
the well-known COCO data set is 1% (Lin et al, 2014). In our case, we add
background images with cylinders (N5) to the development data. In total,
the SMIRK development data contains 1.98% background images, i.e., 1.75%
images without any objects and 0.23% with a cylinder.

The generated SMIRK data are used in sequestered data sets as follows:

Shttps://github.com /ultralytics/yolov5/wiki/Tips-for- Best- Training- Results

https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 27

® Development data: P2, P3, P6, and N5
® Internal test data: P1, P4, N1, and N3
® Verification data: P5, P7, P8 N2, and N4

Note that we deliberately avoid mixing pedestrian models from the ESI
Pro-SiVIC object catalog in the data sets due to the limited diversity in the
images within the ODD.

8 Machine Learning Component Specification

The pedestrian recognition component consists of, among other things, two
ML-based constituents: a pedestrian detector and an anomaly detector (see
Figure 8).

8.1 Pedestrian Recognition Component

The pedestrian detector uses the third-party OSS framework YOLOvV5 by Ultr-
alytics implemented using PyTorch. YOLO is an established real-time object
detection algorithm that was originally released by Redmon et al (2016). The
first version of YOLO introduced a novel object detection process that uses
a single DNN to perform both prediction of bounding boxes around objects
and classification at once. Compared to the alternatives, YOLO was heavily
optimized for fast inference to support real-time applications. A fundamental
concept of YOLO is that the algorithm considers each image only once, hence
its name “You Only Look Once.” YOLO is referred to as a single-stage object
detector. While there have been several versions of YOLO (and the original
authors maintained them until v3), the fundamental ideas of YOLO remains
the same across versions - including YOLOv5 used in SMIRK.

YOLO segments input images into smaller images. Each input image is
split into a square grid of individual cells. Each cell predicts bounding boxes
capturing potential objects and provides confidence scores for each box. Fur-
thermore, YOLO does a class prediction for objects in the bounding boxes.
Note that for the SMIRK MVP, the only class we predict is pedestrian. Relying
on the Intersection over Union (IoU) method for evaluating bounding boxes,
YOLO eliminates redundant bounding boxes. The final output from YOLO
consists of unique bounding boxes with class predictions. Further details are
available in the original paper by Redmon et al (2016).

The pedestrian recognition component in SMIRK uses the YOLOv5 archi-
tecture without any modifications. This paragraph presents a high-level
description of the model architecture and the key techincal details. We refer
the interested reader to further details provided Rajput (2020) and the OSS
repository on GitHub. YOLOv5 provides several alternative DNN architec-
tures. To enable real-time performance for SMIRK, we select YOLOv5s with
191 layers and ~7.5 million parameters.

Figure 10 shows the speed/accuracy tradeoffs for different YOLOv5 archi-
tectures with YOLOv5s depicted in orange. The results are provided by

Springer Nature 2021 BTEX template

28 Ergo, SMIRK 1is Safe

55 Better
50 A -
_ 451
©
> '
[=
g 40 y
9 —e— YOLOV5N
o 35 4 y YOLOvV5s
: —e— YOLOV5m
—e— YOLOVSI
301 —e— YOLOV5x
f o— EfficientDet
25 . ‘
0 40 50

10 20 30
Faster 4— GPU Speed (ms/img)

Fig. 10 Speed/accuracy tradeoffs for different YOLOvV5 architectures. (Image source:
Ultralytics under GPLv3)

Ultralytics including instructions for reproduction. On the y-axis, COCO AP
val denotes the mAP@0.5:0.95 metric measured on the 5,000-image COCO
val2017 data set over various inference sizes from 256 to 1,536. On the x-axis,
GPU Speed measures average inference time per image on the COCO val2017
data set using an AWS p3.2xlarge V100 instance at batch-size 32. The curve
EfficientDet illustrates results from Google AutoML at batch size 8.

As an single-stage object detector, YOLOv5s consists of three core parts:
1) the model backbone, 2) the model neck, and 3) the model head. The model
backbone extracts important features from input images. The model neck gen-
erates so called “feature pyramids” using PANet (Liu et al, 2018) that support
generalization to different sizes and scales. The model head performs the detec-
tion task, i.e., it generates the final output vectors with bounding boxes and
class probabilities.

In SMIRK, we use the default configurations proposed in YOLOv5s regard-
ing activation, optimization, and cost functions. As activation functions,
YOLOV5s uses Leaky ReLU in the hidden layers and the sigmoid function in
the final layer. We use the default optimization function in YOLOvV5s, i.e.,
stochastic gradient descent. The default cost function in YOLOvV5s is binary
cross-entropy with logits loss as provided in PyTorch, which we also use.

8.2 Model Development Log [U]

This section describes how the YOLOv5s model has been trained for the
SMIRK MVP. We followed the general process presented by Ultralytics for
training on custom data.

First, we manually prepared two SMIRK data sets to match the input
format of YOLOVA5. In this step, we also divided the development data [N] into
two parts. The first part containing approximately 80% of development data,
was used for training. The second part, consisting of the remaining data, was

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 29

used for validation. Camera frames from the same video sequence were kept
together in the same partition to avoid having almost identical images in the
training and validation sets. Additionally, we kept the distribution of objects
and scenario types consistent in both partitions. The internal test data [O] was
used as a test set. We then prepared these three data sets, training, validation,
and test, according to Ultralytic’s instructions. We created a dataset.yaml with
the paths to the three data sets and specified that we train YOLOv5 for a
single class, i.e., pedestrians. The data sets were already annotated using ESI
Pro-SiVIC, thus we only needed to export the labels to the YOLO format with
one txt-file per image. Finally, we organize the individual files (images and
labels) according to the YOLOvV5 instructions. More specifically, each label file
contains the following information:

® One row per object

e Each row contains class, x_center, y_center, width, and height.

® Box coordinates are stored in normalized xywh format (from 0 — 1).
e (Class numbers are zero-indexed, i.e., they start from 0.

Second, we trained a YOLO model using the YOLOv5s architecture with
the development data without any pre-trained weights. The model was trained
for 10 epochs with a batch-size of 8. The results from the validation subset
(27,843 images in total) of the development data guide the selection of the
confidence threshold for the ML model. We select a threshold to meet SYS-
PER-REQ3 with a safety margin for the development data, i.e., an FPPI of
0.1%. This yields a confidence threshold for the ML model to classify an object
as a pedestrian that equals 0.448. The final pedestrian detection model, i.e.,
the ML model [V], has a size of ~ 14 MB.

8.3 OOD Detection for the Safety Cage Architecture

SMIRK detects OOD input images as part of its safety cage architecture. The
OOD detection relies on the OSS third-party library Alibi Detect® from Seldon.
Alibi Detect is a Python library that provides several algorithms for outlier,
adversarial, and drift detection for various types of data (Klaise et al, 2020).
For SMIRK, we trained Alibi Detect’s autoencoder for outlier detection, with
three convolutional and deconvolutional layers for the encoder and decoder
respectively.

Figure 11 shows an overview of the DNN architecture of an autoencoder.
An encoder and a decoder are trained jointly in two steps to minimize a recon-
struction error. First, the autoencoder receives input data X and encodes it
into a latent space of fewer dimensions. Second, the decoder tries to reconstruct
the original data and produces output X’. An and Cho (2015) proposed using
the reconstruction error from a autoencoder to identify input that differs from
the training data. Intuitively, if inlier data is processed by the autoencoder,
the difference between X and X’ will be smaller than for outlier data. By
carefully selecting a threshold, this approach can be used for OOD detection.

Shttps://github.com/SeldonIO/alibi-detect

https://github.com/SeldonIO/alibi-detect

Springer Nature 2021 BTEX template

30 Ergo, SMIRK 1is Safe

X —> —>{_Ah_ > » X'
Input Encoder Latent Decoder Output
Space

Fig. 11 Overview architecture of an autoencoder. Adapted from WikiUser:EugenioTL (CC
BY-SA 4.0)

For SMIRK, we trained Alibi Detect’s autoencoder for OOD detection
on the training data subset of the development data. The encoder part is
designed with three convolutional layers followed by a dense layer resulting in
a bottleneck that compresses the input by 96.66%. The latent dimension is
limited to 1,024 variables to limit requirements on processing VRAM of the
GPU. The reconstruction error from the autoencoder is measured as the mean
squared error between the input and the reconstructed instance. The mean
squared error is used for OOD detection by computing the reconstruction
error and considering an input image as an outlier if the error surpasses a
threshold . The threshold used for OOD detection in SMIRK is 0.004, roughly
corresponding to the threshold that rejects a number of samples that equals
the amount of outliers in the validation set. As explained in Section 10.4, the
OOD detection is only active for objects at least 10 m away from ego car
as the results for close-up images are highly unreliable. Furthermore, as the
constrained SMIRK ODD ensures that only one single object appears in each
scenario, the safety cage architecture applies the policy “once an anomaly,
always an anomaly” — objects that get rejected once will remain anomalous
no matter what subsequent frames might contain.

9 SMIRK System Test Specification

This section describes the overall SMIRK test strategy. The ML-based pedes-
trian recognition component is tested on multiple levels. We focus on four
aspects of the ML testing scope facet proposed by Song et al (2022):

® Data set testing: This level refers to automatic checks that verify that spe-
cific properties of the data set are satisfied. As described in the ML Data
Validation Results, the data validation, presented in Section 10.1, includes
automated testing of the Balance desiderata. Zhang et al (2022) refer to
data set testing as Input testing.

® Model testing: Testing that the ML model provides the expected output.
This is the primary focus of academic research on ML testing, and includes
white-box, black-box, and data-box access levels during testing (Riccio et al,

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 31

2020). SMIRK model testing is done independently from model development
and results in ML Verification Results [Z] as described in Section 10.2.2.

¢ Unit testing: Conventional unit testing on the level of Python classes. A test
suite developed for the pytest framework is maintained by the developers
and not elaborated further in this paper.

® System testing: System-level testing of SMIRK based on a set of Operational
Scenarios [EE]. All test cases are designed for execution in ESI Pro-SiVIC.
The system testing targets the requirements in the System Requirements
Specification. This level of testing results in Integration Testing Results [FF]
presented in Section 10.3.

9.1 ML Model Testing [AA]

This section corresponds to the Verification Log [AA] in AMLAS Step 5, i.e.,
Model Verification Assurance. Here we explicitly document the ML Model test-
ing strategy, i.e., the range of tests undertaken and bounds and test parameters
motivated by the SMIRK system requirements.

The testing of the ML model is based on assessing the object detection
accuracy for the sequestered verification data set. A fundamental aspect of
the verification argument is that this data set was never used in any way
during the development of the ML model. To further ensure the independence
of the ML verification, engineers from Infotiv, part of the SMILE III research
consortium, led the corresponding verificaiton and validation work package
and were not in any way involved in the development of the ML model. As
described in the Machine Learning Component Specification (see Section 8),
the ML development was led by Semcon with support from RISE Research
Institutes of Sweden.

The ML model test cases provide results for both 1) the entire verification
data set and 2) eight slices of the data set that are deemed particularly impor-
tant. The selection of slices was motivated by either an analysis of the available
technology or ethical considerations, especially from the perspective of Al fair-
ness (Borg et al, 2021b). Consequently, we measure the performance for the
following slices of data. Identifiers in parentheses show direct connections to
requirements.

S1 The entire verification data set

S2 Pedestrians close to the ego car (longitudinal distance < 50 m) (SYS-PER-
REQ1, SYS-PER-REQ2)

S3 Pedestrians far from the ego car (longitudinal distance > 50 m)

S4 Running pedestrians (speed > 3 m/s) (SYS-ROB-REQ2)

S5 Walking pedestrians (speed > 0 m/s but < 3 m/s) (SYS-ROB-REQ2)
S6 Occluded pedestrians (entering or leaving the field of view, defined as
bounding box in contact with any edge of image) (DAT-COM-REQ4)

S7 Male pedestrians (DAT-COM-REQ2)
S8 Female pedestrians (DAT-COM-REQ2)
S9 Children (DAT-COM-REQ?2)

Springer Nature 2021 BTEX template

32 Ergo, SMIRK 1is Safe

Evaluating the output from an object detection model in computer vision is
non-trivial. We rely on the established IoU metric to evaluate the accuracy of
the YOLOv5 model. After discussions in the development team, supported by
visualizations”, we set the target at 0.5. We recognize that there are alternative
measures tailored for pedestrian detection, such as the log-average miss rate
(Dollar et al, 2011) but we find such metrics to be unnecessarily complex for
the restricted SMIRK ODD with a single pedestrian. There are also entire
toolboxes that can be used to assess object detection (Bolya et al, 2020). In
our safety argumentation, however, we argue that the higher explainability of
a simpler — but valid — evaluation metric outweighs the potential benefits of a
customized metric customized for a more complex ODD.

Even using the standard IoU metric to assess how accurate SMIRK’s ML
model is, the evaluation results are not necessarily intuitive to non-experts.
Each image in the SMIRK data set either has a ground truth bounding box
containing the pedestrian or no bounding box at all. Similarly, when perform-
ing inference on an image, the ML model will either predict a bounding box
containing a potential pedestrian or no bounding box at all. IoU is the inter-
section over the union of the two bounding boxes. An IoU of 1 implies a perfect
overlap. For the ML model in SMIRK, we evaluate pedestrian detection at IoU
= 0.5, which for each image means:

TP True positive: IoU > 0.5

FP False positive: IoU < 0.5

FN False negative: There is a ground truth bounding box in the image, but no
predicted bounding box.

TN True negative: All parts of the image with neither a ground truth nor a
predicted bounding box. This output carries no meaning in our case.

Figure 12 shows predictions from the the ML model. The green rectangles
show the ground truth and the red rectangles show ML model’s prediction of
where a pedestrian is present. The left example is a FP since IoU=0.3 with
a predicted box substantially smaller than the ground truth. On the other
hand, the ground truth is questionable, as there probably is only a single pixel
containing the pedestrian below the visible arm that drastically increases the
size of the green box. The center example is a TP with [oU=0.9, i.e., the
overlap between the boxes is very large. The right example is another FP with
IoU=0.4 where the predicted box is much larger than the ground truth. These
examples show that FPs during model testing do not directly translate to FPs
on the system level as discussed in the HARA (Safety Requirements Allocated
to ML Component [E]). If any of the objects within the red bounding boxes
were on a collision course with the ego car, commencing PAEB would indeed
be the right action for SMIRK and thus not violate SYS-SAF-REQ1. This
observation corroborates the position by (Haq et al, 2021), i.e., system level
testing that goes beyond model testing on single frames is critically needed.

"https://zapire.com/docs/visualizing-ml/iou.html

https://zapire.com/docs/visualizing-ml/iou.html

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 33

| —

Fig. 12 Example predictions from the SMIRK ML model. The center image represents a
TP, whereas the left and right examples are FPs with IoU scores of 0.3 and 0.4, respectively.

All results from running ML model testing, i.e., ML Verification Results
[Z], are documented in the Protocols folder.

9.2 System Level Testing

System-level testing of SMIRK involves integrating the ML model into the
pedestrian recognition component and the complete PAEB ADAS. We do this
by defining a set of Operational Scenarios [EE] for which we assess the satisfac-
tion of the ML Safety Requirements. The results from the system-level testing,
i.e., the Integration Testing Results [FF], are presented in Section 10.3.

9.2.1 Operational Scenarios

SOTIF defines an operational scenario as “a description of an imagined
sequence of events that includes the interaction of the product or service with
its environment and users, as well as interaction among its product or service
components” (ISO, 2019). Consequently, the set of operational scenarios used
for testing SMIRK on the system level must represent the diversity of real sce-
narios that may be encountered when SMIRK is in operation. Furthermore,
for testing purposes, it is vital that the set of defined scenarios are meaningful
with respect to the verification of SMIRK’s safety requirements.

As SMIRK is designed to operate in EST Pro-SiVIC, the difference between
defining operational scenarios in text and implementation scripts to execute
the same scenarios in the simulated environment is very small. We will not
define any operational scenarios that cannot be scripted for execution in ESI
Pro-SiVIC. To identify a meaningful set of operational scenarios, we use equiv-
alence partitioning as proposed by Masuda (2017) as one approach to limit
the number of test scenarios to execute in vehicle simulators. Originating in
the equivalence classes, we use combinatorial testing to reduce the set of oper-
ational scenarios. Using combinatorial testing to create test cases for system
testing of a PAEB testing in a vehicle simulator has previously been reported
by Tao et al (2019). We create operational scenarios that provide complete

Springer Nature 2021 BTEX template

34 Ergo, SMIRK 1is Safe

pair-wise testing of SMIRK considering the identified equivalence classes using
the AllPairs test combinations generator®.

Based on an analysis of the ML Safety Requirements and the Data
Requirements, we define operational scenarios addressing SYS-ML-REQ1
and SYS-ML-REQ2 separately. For each subset of operational scenarios, we
identify key variation dimensions (i.e., parameters in the test scenario genera-
tion) and split dimensions into equivalence classes using explicit ranges. Note
that ESI Pro-SiVIC enables limited configurability of basic shapes compared
to pedestrians, thus the corresponding number of operational scenarios is
lower.

Operational Scenarios for SYS-ML-REQ1:

¢ Pedestrian starting point (lateral offset from the road in meters): Left side
of the road (-5 m), Center of the road (0 m), Right side of the road (5 m)

¢ Longitudinal distance from ego car (offset in meters): Close distance (<
25 m), Medium distance (25-50 m), Far away (> 50 m)

® Pedestrian appearance: Female casual, Male business casual, Male business,
Female business, Child, Male worker

® Pedestrian speed (m/s): Stationary (0 m/s), Slow (1 m/s), Fast (3 m/s)

® Pedestrian crossing angle (degrees): Toward ego car (0), Diagonal toward
(45), Perpendicular (90), Diagonal away (135), Away from car (180)

® Ego car speed (m/s): Slow (< 10 m/s), Medium (10-15 m/s), Fast (15—
20 m/s)

The dimensions and ranges listed above result in 2,430 possible combina-
tions. Using combinatorial testing, we create a set of 25 operational scenarios
that provides pair-wise coverage of all equivalence classes.

Operational Scenarios for SYS-ML-REQ2:

® Object starting point (lateral offset from the road in meters): Left side of
the road (-5 m), On the road (0 m), Right side of the road (5 m)

¢ Longitudinal distance from ego car (offset in meters): Close (< 25 m),
Medium distance (25-50 m), Far away (> 50 m)

® Object appearance: Sphere, Cube, Cone, Pyramid

® Object speed (m/s): Stationary (0 m/s), Slow (1 m/s), Fast (3 m/s)

® Ego car speed (m/s): Slow (<10 m/s), Medium (10-15 m/s), Fast (15—
20 m/s)

The dimensions and ranges listed above result in 324 possible combinations.
Using combinatorial testing, we create a set of 13 operational scenarios that
provides pair-wise coverage of all equivalence classes.

For each operational scenario, two test parameters represent ranges of val-
ues, i.e., the longitudinal distance between ego car and the pedestrian and the
speed of ego car. For these two test parameters, we identify a combination

8https://github.com/thombashi/allpairspy

https://github.com/thombashi/allpairspy

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 35

Table 2 Pairwise-testing of equivalence classes constituting 38 operational scenarios.

ID Object X Y Angle Speed Car_Speed
TC-0S-1 P7 close left diagonal_away slow slow
TC-0S-2 pP7 medium | center away stationary medium
TC-0S-3 p7 far right diagonal _towards fast fast
TC-0S-4 P5 medium | right perpendicular slow medium
TC-0S-5 P5 close center towards fast fast
TC-0S-6 P1 far left diagonal_away fast fast
TC-0OS-7 P6 medium left perpendicular fast medium
TC-0OS-8 P6 far center away slow slow
TC-0S-9 P1 close right diagonal_towards slow slow
TC-0S-10 P4 left right diagonal_away slow slow
TC-0O8-11 P8 close left perpendicular fast slow
TC-0S-12 P8 far left diagonal_towards slow medium
TC-0S-13 P4 far center perpendicular stationary fast
TC-0S-14 P5 close left diagonal_away slow slow
TC-OS-15 P6 close right diagonal_away slow slow
TC-OS-16 P4 medium left diagonal_towards slow slow
TC-0S-17 P8 close right diagonal_away slow slow
TC-0S-18 P1 close center | diagonal_towards | stationary medium
TC-0S-19 P1 medium left diagonal_towards slow slow
TC-0S-20 P6 medium left diagonal _towards slow slow
TC-08-21 P1 medium left perpendicular slow medium
TC-0S-22 P5 medium left diagonal_towards slow slow
TC-0S-23 P4 medium left diagonal_away slow medium
TC-0S-24 p7 medium left perpendicular slow slow
TC-0S-25 P8 medium left diagonal_towards slow slow
TC-0S-26 N2 close left perpendicular slow slow
TC-0S-27 N3 medium right perpendicular fast medium
TC-OS-28 N4 far right perpendicular slow fast
TC-0S-29 N1 far left perpendicular slow medium
TC-0S-30 N1 medium left perpendicular fast fast
TC-0S-31 N1 close right perpendicular fast slow
TC-0S-32 N4 close left perpendicular fast fast
TC-0S-33 N3 medium left perpendicular slow slow
TC-0S-34 N2 far right perpendicular slow slow
TC-0S-35 N3 far left perpendicular slow fast
TC-0S-36 N2 medium left perpendicular fast medium
TC-08-37 N3 close left perpendicular slow slow
TC-0S-38 N1 close left perpendicular slow medium

of values that result in a collision unless SMIRK initiates emergency braking.
Table 2 shows an overview of the 38 operational scenarios, whereas all details

are available as executable test scenarios in the GitHub repository.

9.2.2 System Test Cases

The system test cases are split into three categories. First, each operational
scenario identified in Section 9.2.1 constitutes one system test case, i.e., Test
Cases 1-38. Second, to increase the diversity of the test cases in the simulated
environment, we complement the reproducible Test Cases 1-38 with test case
counterparts adding random jitter to the parameters. For Test Cases 1-38, we

Springer Nature 2021 BTEX template

36 Ergo, SMIRK 1is Safe

create analogous test cases that randomly add jitter in the range from -10%
to +10% to all numerical values. Partial random testing has been proposed by
Masuda (2017) in the context of test scenarios execution in vehicle simulators.
Note that introducing random jitter to the test input does not lead to the test
oracle problem (Barr et al, 2014), as we can automatically assess whether there
is a collision between ego car and the pedestrian without emergency braking
in ESI Pro-SiVIC or not (TC-RAND-[1-25]). Furthermore, for the test cases
related to provoking ghost braking, we know that emergency braking shall not
commence.

The third category is requirements-based testing (RBT). RBT is used to
gain confidence that the functionality specified in the ML Safety Require-
ments has been implemented correctly (Hauer et al, 2019). The top-level safety
requirement SYS-SAF-REQ1 will be verified by testing of all underlying
requirements, i.e., its constituent detailed requirements. The test strategy relies
on demonstrating that SYS-ML-REQ1 and SYS-ML-REQ2 are satisfied
when executing TC-0S-[1-38] and TC-RAND-[1-38]. SYS-PER-REQ1 -
SYS-PER-REQ5 and SYS-ROB-REQ1 - SYS-ROB-REQ4 are verified
through the model testing described in Section 9.1. The remaining performance
requirement SYS-PER-REQ6 is verified by TC-REQ-3. Table 3 lists all sys-
tem test cases, of all three categories, using the Given-When-Then structure as
used in behavior-driven development (Tsilionis et al, 2021). For the test cases
TC-RBT-[1-3], the “Given” condition is that all metrics have been collected
during execution of TC-OS-[1-38] and TC-RAND-[1-38]. The set includes seven
metrics:

1. MinDist: Minimum distance between ego car and the pedestrian during a
scenario.

2. TimeTrig: Time when the radar tracking component first returned
TTC < 4 s for an object.

3. DistTrig: Distance between ego car and the object when the radar
component first returned TTC < 4 s for an object.

4. TimeBrake: Time when emergency braking was commenced.

5. DistBrake: Distance between ego car and the object when emergency
braking commenced.

6. Coll: Whether a scenario involved a collision between ego car and a
pedestrian.

7. CollSpeed: Speed of ego car at the time of collision.

10 SMIRK Test Results

This section presents the most important test results from three levels of ML
testing, i.e., data testing, model testing, and system testing. Complete test
reports are available in the protocols subfolder on GitHub”. Moreover, this
section presents the Erroneous Behaviour Log.

9https://github.com/RI-SE /smirk/tree/main/docs/protocols

https://github.com/RI-SE/smirk/tree/main/docs/protocols

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 37

Table 3 SMIRK system test cases. VMC means valid metrics were collected during
execution of the 38 preceding scenarios.

ID Type Given ‘When Then

TC- Op. Scenario Pedestrian crosses the street | SMIRK commences

OS-[1- Sce- [1-25] and ego car is on collision | PAEB

25] nario course

TC- Op. Scenario Object crosses the street and | SMIRK does not com-

OS-[26- | Sce- [26-38] ego car is on collision course mence PAEB

38] nario

TC- Random | TC- Pedestrian crosses the street | SMIRK commences

RAND- | Testing | OS-[1- and ego car is on collision | PAEB

[1-25] 25]4jitter | course

TC- Random | TC- Object crosses the street and | SMIRK does not com-

RAND- | Testing | OS-[19- ego car is on collision course mence PAEB

[19-38] 38]+jitter

TC- RBT VMC The radar tracking compo- | The pedestrian recogni-

RBT-1 (SYS- nent returns a pedestrian with | tion component identifies
ML- TTC <4s the pedestrian
REQL1)

TC- RBT VMC The radar tracking component | The pedestrian recogni-

RBT-2 (SYS- returns a basic shape with | tion component does not
ML- TTC < 4s identify a pedestrian
REQ2)

TC- RBT VMC The radar tracking compo- | The inference speed of

RBT-3 (SYS- nent returns a pedestrian with | the pedestrian recogni-
PER- TTC < 4 s within 80 m tion component is at least
REQ6) 10 FPS

10.1 Results from Data Testing [S]

This section describes the results from testing the SMIRK data set. The data
testing primarily involves a statistical analysis of its distribution and auto-
mated data validation using Great Expectations'®. Together with the outcome
of the Fagan inspection of the Data Management Specification (described in
Section 3.3.1), this constitutes the ML Data Validation Results in AMLAS.
As depicted later in Figure 22, the results entail evidence mapping to the four
assurance-related desiderata, i.e., we report a validation of 1) data relevance,
2) data completeness, 3) data balance, and 4) data accuracy. Since the we gen-
erate synthetic data using ESI Pro-SiVIC, data relevance has been validated
through code reviews and data accuracy is implicit as the tool’s ground truth
is used. For both the relevance and accuracy desiderata, we have manually
analyzed a sample of the generated data to verify requirements satisfaction.
We validate the ethical dimension of the data balance by analyzing the gen-
der (DAT-BAL-REQ1) and age (DAT-BAL-REQ2) distributions of the
pedestrians in the SMIRK data set. SMIRK evolves as a demonstrator in a
Swedish research project, which provides a frame of reference for this analysis.
Table 4 shows how the SMIRK data set compares to Swedish demographics
from the perspective of age and gender. The demographics originate in a study
on collisions between vehicles and pedestrians by the Swedish Civil Contin-
gencies Agency (Schyllander, 2014). We notice that 1) children are slightly
over-represented in accidents but under-represented in deadly accidents, and

Ohttps://greatexpectations.io/

https://greatexpectations.io/

Springer Nature 2021 BTEX template

38 Ergo, SMIRK 1is Safe

Table 4 Distribution of pedestrian types in Sweden and in the SMIRK data set.

Pedestrian types Population | Accidents | Deadly accidents | SMIRK
Children & young adults (0-19) 23% 27% 12% 12.5%
Adult males (20+) 39% 31% 57% 50%
Adult females (20+) 38% 42% 31% 37.5%

that 2) adult males account for over half of the deadly accidents in Sweden.
The rightmost column shows the distribution of pedestrian types in the entire
SMIRK data set. We designed the SMIRK data generation process to result in
a data set that resembles the deadly accidents in Sweden, but, motivated by Al
fairness, we increased the fraction of female pedestrians to mitigate a poten-
tial gender bias. Finally, as discussed in Section 7.2.3, code reviews confirmed
that the development data contains roughly 2% “background images”.

Automated data testing is performed by defining conditions that shall be
fulfilled by the data set. These conditions are checked against the existing
data and any new data that is added. Some tests are fixed and simple, such
as expecting the dimensions of input images to match the ones produced by
the vehicle’s camera. Similarly, all bounding boxes are expected to be within
the dimensions of the image. Other tests look at the distribution and ranges of
values to assure the completeness, accuracy, and balance of the data set and
catch human errors. This includes validating enough coverage of pedestrians
at different positions of the image, coverage of varying range of pedestrian
distances, and bounding box aspect ratios. For values that are hard to define
rules for, a known good set of inputs can be used as a starting point and
remaining and new inputs can be checked to against these reference inputs.
As an example, this can be used to verify that the color distribution and pixel
intensity are within expected ranges. This can be used to identify images that
are too dark or dissimilar to existing images.

Figure 13 shows a selection of summary plots from the data testing that
support our claims for data validity, in particular from the perspective of data
completeness. Subplot A) presents the distance distribution between ego car
and pedestrians, verifying that the data set contains pedestrians at distances
10-100 m (DAT-COM-REQ5). Subplot B) shows a heatmap of the bound-
ing boxes’ centers captures by the 752x480 WVGA camera. We confirm that
pedestrians appear from the sides of the field of view and a larger fraction of
images contain a pedestrian just in front of ego car. The position distribution
supports our claim that DAT-COM-REQA is satisfied, i.e., the data samples
represent different camera angles. Subplot C) shows a heatmap of bounding
box dimensions, i.e., different aspect ratios. A variety of aspect ratios indicate
that pedestrians move with a diversity of arm and leg movements — indicating
walking and running — and thus support our claim that DAT-COM-REQ3
is fulfilled. Finally, subplot D) shows the color histogram of the data set. In
the automated data testing, we use this as a reference value when adding
new images to ensure that they match the ODD. For example, a sample of
nighttime images would have a substantially different color distribution.

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 39

B)

.
&
=]

8000 1 \) .
£
€

@ 400
6000 3

g 2 350
8 E
<]

4000 2 a0
T
2
8

2000 “ '" “ = 250 ———
200
0 H ||||]|III||[|
0 20 40 60 80 100 120 0 100 200 300 400 500 600 700
Distance to pedestrian Horizontal bounding box center

Color distribution

D)

30000

% 8 8
8 8 38

Box height
=3
o

20000

:) -

0 50 100 150 200 250 300 350 0
Box width 0 50 100 150 200 250

@
&

3
8

g

Fig. 13 Four visualizations from the data testing. A) distance distributions between ego
car and pedestrians (m), B) heatmap of center positions of the bounding boxes (WVGA
pixel), C) heatmap of bounding box dimensions (pixels), and D) the color histogram of the
data set.

10.2 Results from Model Testing

This section is split into results from testing done during development and the
subsequent independent verification. Throughout this section, the following
abbreviations are used for a set of standard evaluation metrics: Precision (P),
Recall (R), Fl-score (F1), Intersection over Union (IoU), True Positive (TP),
False Positive (FP), FPs Per Image (FPPI), False Negative (FN), and Average
Precision for IoU at 0.5 (AP@0.5), and Confidence (Conf).

10.2.1 Internal Test Results [X]

In this section, we present the most important results from the internal testing.
These results provide evidence that the ML model satisfies the ML safety
requirements (see Section 5.3) on the internal test data. The total number of
images in the internal test data is 139,526 (135,139 pedestrians (96.9%) and
4,387 non-pedestrians (3.1%)). As described in Section 9.1, Figure 14 depicts
four subplots representing IoU = 0.5: A) P vs R, B) F1 vs. Conf, C) P vs. Conf,
and D) R vs. Conf. Subplot A) shows that the ML model is highly accurate,
i.e., the unavoidable discrimination-efficiency tradeoff of object detection (Wu
and Nevatia, 2008) is only visible in the upper right corner. Subplots B)-D)
shows how P, R, and F1 vary with different Conf thresholds. Table 5 presents
further details of the accuracy of the ML model for the selected Conf threshold,
organized into 1) all distances from the ego car, 2) within 80 m, and 3) within

Springer Nature 2021 BTEX template

40 Ergo, SMIRK 1is Safe

1.0 1.0
0e 08
06 08
c
2
§)))
o
0.4 0.4
02 0.2
F1 0.997 at confidence threshold 0.448
AP@S50=0.994 Confidence threshold
%o 0.z 0.4 0.6 08 10 "% 0.2 0.4 06 08 10
Recall Confidence
1.0 1.0
08 08
08 06
c —
] 3
2 g
o e
o
04 0.4
0.2 02
Precision 0.995 at confidence threshold 0 448 Recall 0.999 at confidence threshold 0.448
Confidence threshold Confidence threshold
%%o 0.2 0.4 06 08 10 “%e 02 04 06 08 10
Confidence Confidence

Fig. 14 Evaluation of the ML model on the internal test data at IoU=0.5. A) P-R curve,
B) F1 vs. Conf, C) P vs. Conf, and D) R vs. Conf for the internal test data.

50 m, respectively. The table also shows the effect of adding OOD detection
using the autoencoder, i.e., a substantially reduced number of FPs.

Table 6 demonstrates how the ML model satisfies the performance require-
ments on the internal test data. First, the TP rate (95.9%) and the FN rate
(0.31%) for the respective distances meet the requirements. The model’s FPPI
(0.42%), on the other hand, is too high to meet SYS-PER-REQ3 as we
observed 444 FPs (cones outnumber spheres by 2:1). This observation rein-
forces the need to use a safety cage architecture, i.e., OOD detection that can
reject input that does not resemble the training data. The rightmost column
in Table 6 shows how the FPPI decreased to 0.012% with the autoencoder. All
basic shapes were rejected, but 13 images with pedestrians led to FPs within
the ODD due to too low IoU scores.

SYS-PER-REQ4 is met as the fraction of rolling windows with more
than a single FN is 0.24%, i.e., < 3%. Figure 15 shows the distribution of

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 41
Table 5 ML model accuracy on the internal test data at the Conf threshold 0.448. The
rows show results for all distances, within 80 m, and within 50 m, respectively. Every second
row show results for the ML model followed by OOD detection using the autoencoder.

Distance Total TP FP | FN P R F1 AP@O0.5
All 139,526 | 134,948 | 711 | 191 | 0.9948 | 0.9986 | 0.9967 0.9942
+00D 134,927 20 212 | 0.9999 | 0.9984 | 0.9991 0.995
< 80 m [105,588 | 101,320 | 444 | 173 | 0.9956 | 0.9983 0.997 0.9948
+00D 101,300 13 193 | 0.9999 | 0.9981 0.999 0.995
< 50 m [61,845 57,877 186 | 173 | 0.9968 | 0.9970 | 0.9969 0.9944
+00D 57,857 13 193 | 0.9998 | 0.9967 | 0.9982 0.995

Table 6 ML model satisfaction of the performance requirements on the internal test data
at the Conf threshold 0.448. R1-R4 = SYS-PER-REQ1-4. The rightmost column show
results for the YOLOv5 model followed by OOD detection using the autoencoder.

Req. Expected Observed (Model) | Observed (Model+OOD)

TP rate > 93% 101,320 101,300
Rl for < 80 m 105,588 96.0% 105,588 95.9%

FN rate < 7% 173 _ 193 _
R2 for £ 50 m Al = 0.28% A =031%

FPPI < 0.1% . 5
R3 for < 80 m Tl = 0.42% Toikes = 0.012%

< 3% of rolling windows
R4 contain > 2 misses in Toresr = 021% Toress = 0.24%
5 frames for < 80 m

position errors in the object detection for pedestrians within 80 m of ego
car, i.e., the difference between the object detection position and ESI Pro-
SiVIC ground truth. The median error is 1.0 cm, the 99% percentile is 5.6 cm,
and the largest observed error is 12.7 cm. Thus, we show that SYS-PER-
REQS5 is satisfied for the internal test data, i.e., < 50 cm position error for
pedestrian detection within 80 m. Note that satisfaction of SYS-PER-REQ6,
i.e., sufficient inference speed, is demonstrated as part of the system testing
reported in Section 10.3. The complete test report is available on GitHub.
Table 7 presents the output of the ML model on the eight slices of internal
test data defined in Section 9.1. Note that we saved the children in the ESI
Pro-SiVIC object catalog for the verification data, i.e., S9 does not exist in the
internal test data. Apart from the S6 slice with occlusion, the model accuracy
is consistent across the slices which corroborates satisfaction of the robustness
requirements on the internal test data, e.g., in relation to pose (SYS-ROB-
REQ?2), size (SYS-ROB-REQ2), and appearance (SYS-ROB-REQ2).

10.2.2 ML Verification Results [Z]

This section reports the key findings from conducting the independent ML
model testing, i.e., the Verification Log in the AMLAS terminology. These
results provide independent evidence that the ML model satisfies the ML safety
requirements (see Section 5.3) on the verification data. The total number of
images in the verification data is 208,884 (202,712 pedestrians (97.0%) and

Springer Nature 2021 BTEX template

42 Ergo, SMIRK 1is Safe
50000
40000

30000

=
=3
Q
S

20000

10000 I

. T
0 2 4 6

Error (cm)

8 10 12

Fig. 15 Distribution of position errors for the internal test data.

Table 7 ML model accuracy on eight slices of the internal test data. S1=All data,
S2=close distance, S3=far distance, S4=running pedestrians, S5=walking pedestrians,
S6=occluded pedestrians, S7T=males, and S8=females. Every second rows show results for
the ML model followed by OOD detection using the autoencoder.

Slice Total TP FP | FN P R F1 AP@O0.5
S1 139,526 | 134,948 | 711 | 191 | 0.9948 | 0.9986 | 0.9967 0.9942
+00D | 134,927 | 20 212 | 0.9999 | 0.9984 | 0.9991 0.995
S2 [61,333 57,774 16 172 | 0.9997 | 0.997 | 0.9984 0.995
+00D | 57,753 13 193 | 0.9998 | 0.9967 | 0.9982 0.995
S3 [43,547 43,547 0 0 1 1 1 0.995
+00D | 43,547 0 0 1 1 1 0.995
S4 [38,786 37,804 9 48 0.9998 | 0.9987 | 0.9992 0.995
+00D | 37,783 8 69 0.9998 | 0.9982 | 0.9990 0.995
S5 [99,740 97,144 14 143 | 0.9999 | 0.9985 | 0.9992 0.995
+00D | 97,144 12 143 | 0.9999 | 0.9985 | 0.9992 0.995
S6 [778 609 16 169 | 0.9744 | 0.7823 | 0.8679 0.9211
+00D 593 13 185 | 0.9785 | 0.7618 | 0.8567 0.8899
S7 [69,238 67,470 14 99 0.9998 | 0.9985 | 0.9992 0.995
+00D | 67,460 11 109 | 0.9998 | 0.9984 | 0.9991 0.995
S8 [69,288 67,479 9 91 0.9999 | 0.9987 | 0.9993 0.995
+00D | 67,468 9 102 | 0.9999 | 0.9985 | 0.9992 0.995

6,172 non-pedestrians (3.0%)). Analogous to Section 10.2.1, Figure 16 depicts
four subplots representing IoU = 0.5: A) P vs R, B) F1 vs. Conf, C) P vs. Conf,
and D) R vs. Conf. We observe that the appearance of the four subplots closely
resembles the corresponding plots for the internal test data (cf. Figure 14).
Table 8 shows the output from the ML model using the Conf threshold
0.448 on the verification data. The table is organized into 1) all distances from
the ego car, 2) within 80 m, and 3) within 50 m, respectively. The table also
shows the effect of adding OOD detection using the autoencoder, i.e., the num-
ber of FPs is decreased just as for the internal test data. Table 9 demonstrates
how the ML model satisfies the performance requirements on the verification
data. Similar to the results for the internal test data, the FPPI (0.21%) is

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 43

1.0 1.0
0.8 08
06 08
c
2
§)))
o
0.4 0.4
02 0.2
F10.987 at confidence threshold 0.448
AP@50=0.994 Confidence threshold
%o 0z 0.4 06 08 10 "% 0.2 04 06 08 1.0
Recall Confidence
1.0 1.0
08 08
08 08
=
h=) =
(7]
] 4
o
0.4 0.4
0.2 0.2
Precision 0.995 at confidence threshold 0.448 Recall 0.979 at confidence threshold 0.448
Confidence threshold Confidence threshold
%% 02 0.4 06 08 10 "% 0.2 04 06 08 1.0
Confidence Confidence

Fig. 16 Evaluation of the ML model on the verification data at IoU=0.5. A) P-R curve,
B) F1 vs. Conf, C) P vs. Conf, and D) R vs. Conf for the internal test data.

too high to satisfy SYS-PER-REQ3 without additional OOD detection, i.e.,
we observed 330 FPs (roughly an equal share of pyramids and children). The
rightmost column in Table 9 shows how the FPPI decreased to 0.015% with
the autoencoder. All basic shapes were rejected, instead children at a long dis-
tance with too low IoU scores dominate the FPs. We acknowledge that it is
hard for the YOLOvV5 to achieve a high IoU for the few pixels representing
a child almost 80 m away. However, commencing emergency braking in such
cases is an appropriate action — a child detected with a low IoU is not an exam-
ple of the ghost braking hazard described in Section 5.2. SYS-PER-REQ4
is satisfied as the fraction of rolling windows with more than a single FN is
2.3%. Figure 17 shows the distribution of position errors. The median error is
1.0 cm, the 99% percentile is 5.4 cm, and the largest observed error is 12.8 cm.
Consequently, we show that SYS-PER-REQS5 is satisfied for the verification
data.

Springer Nature 2021 BTEX template

44 Ergo, SMIRK 1is Safe

Table 8 ML model accuracy on the verification data at the Conf threshold 0.448. The three
rows show results for all distances, within 80 m, and within 50 m, respectively. Every second
row show results for the ML model followed by OOD detection using the autoencoder.

Distance Total TP FP FN P R F1 APQ@O.5
All 208,884 | 198,457 | 990 | 4,255 | 0.9950 | 0.9790 | 0.9870 0.9942
+00D 195,695 | 533 | 7,017 | 0.9973 | 0.9654 | 0.9811 0.9878
< 80 m [158,066 | 151,976 | 330 210 0.9978 | 0.9986 | 0.9982 0.9945
+00D 149,214 23 2,972 | 0.9998 | 0.9905 | 0.9901 0.988
< 50 m [92,592 86,847 178 165 0.9980 | 0.9981 | 0.9980 0.9949
+00D 84,085 21 2,972 | 0.9998 | 0.9805 | 0.9901 0.988

Table 9 ML model satisfaction of the performance requirements on the verification data
at the Conf threshold 0.448. R1-R4 = SYS-PER-REQ1-4. The rightmost column show
results for the YOLOv5 model followed by OOD detection using the autoencoder.

Req. Expected Observed (Model) | Observed (Model+OOD)
TP rate > 93% 151,976 149,214
R1 for < 80 m 158,066 96.1% 158,066 94.4%
FN rate < 7% 165 2,927
R2 for < 50 m % = 0.18% 22T = 3.2%
FPPI < 0.1% 330 23
R3 for < 80 m 158.066 — 0.21% 158,066 — 0.015%
< 3% of rolling windows
R4 contain > 2 misses in % =0.13% 12’2%830 = 2.3%
5 frames for < 80 m
80000
60000
E
3 40000
&]
20000
. I.-_
0 2 4 6 8 10 12
Error (cm)

Fig. 17 Distribution of position errors for the verification data.

Table 11 presents the output of the ML model on the nine slices of the veri-
fication data defined in Section 9.1. In relation to the robustness requirements,
we notice that there the accuracy is slightly lower for S9 (children). This find-
ing is related to the size requirement SYS-ROB-REQ3. Table 10 contains
an in-depth analysis of children at different distances with OOD detection.
We confirm that most FPs occur outside of the ODD, i.e., 507 out of 512 FPs
occur for children more than 80 m from ego car. In extension, we show that

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 45

Table 10 Detailed analysis for children. The rows show results results for the ML model
followed by OOD detection using the autoencoder for four distance ranges. The bottom
row in italic font is outside the ODD.

Distance | Total TP FP FN P R F1 AP@O0.5
All 69,301 | 63,360 | 512 [4,174 | 0.992 | 0.9382 | 0.9643 [0.9877
<80 m 50,696 | 50,402 [5 294 | 0.9999 [0.9942 | 0.9971 0.995
<50 m 30,731 | 28,715 [3 249] 0.9999 [0.9914 | 0.9956 0.995
[>80m [16,858 | 12,803 | 507 | 4,035 | 0.9619 | 0.7604 | 0.8493 | 0.942 |

Table 11 ML model accuracy on nine slices of the verification data. S1=All data,
S2=close distance, S3=far distance, S4=running pedestrians, S5=walking pedestrians,
S6=occluded pedestrians, ST=males, S8=females, and S9=children. Every second rows
show results for the ML model followed by OOD detection using the autoencoder.

Slice Total TP FP FN P R F1 AP@O0.5
S1 208,884 | 198,457 | 990 | 4,255 | 0.995 0.979 0.987 0.9942
+O00D | 195,695 | 533 | 7,017 | 0.9998 | 0.9616 | 0.9803 0.9878
S2 [92,028 86,691 22 165 0.9997 | 0.9981 | 0.9989 0.995
+00D | 83,929 21 2,927 | 0.9997 | 0.9663 | 0.9827 0.9761
S3 [65,330 65,285 2 45 1 0.9993 | 0.9996 0.995
+00D | 65,285 2 45 1 0.9993 | 0.9996 0.995
S4 [58,267 56,130 110 716 0.998 | 0.9874 | 0.9927 0.9949
+00D | 54,964 110 | 1,882 | 0.998 | 0.9669 | 0.9822 0.9818
S5 [149,617 | 142,328 | 424 | 3,538 | 0.997 | 0.9757 | 0.9863 0.9949
+O00D | 140,732 | 423 | 5,134 | 0.997 | 0.9648 | 0.9806 0.9882
S6 [1,031 866 22 165 0.9752 0.84 0.9026 0.9289
+00D 805 21 226 0.9746 | 0.7808 | 0.867 0.8783
S7 [69,292 67,555 15 54 0.9998 | 0.9992 | 0.9995 0.995
+00D | 65,009 14 | 2,600 | 0.9998 | 0.9616 | 0.9803 0.9741
S8 [69,291 67,495 7 74 0.9999 | 0.9989 | 0.9994 0.995
+00D | 67,482 7 87 0.9999 | 0.9987 | 0.9993 0.995
S9 [69,301 63,408 | 512 | 4,126 | 0.992 | 0.9389 | 0.9647 0.9879
+00D | 63,205 | 512 | 4,329 | 0.992 | 0.9359 | 0.9631 0.9871

the performance requirements are still satisfied for the most troublesome slice

of data as follows:

e TP rate children < 80m:
® N rate children < 50m:
e FPPI children < 80m: 52%63 = 0.0099%

50,402

S0 = 99.4%
249 __

A =0.81%

The independent verification concludes that all requirements are met, based
on the same argumentation as for the internal test results. The complete
verification report is available on GitHub.

10.3 Results from System Testing [FF]

This section presents an overview of the results from testing SMIRK in ESI
Pro-SiVIC, which corresponds to the Integration Testing Results in AMLAS.
As explained in Section 9.2.2, we measure seven metrics for each test case

Springer Nature 2021 BTEX template

46 Ergo, SMIRK is Safe

120

100

80

Count

60

40

2

o

Executlon time (ms

Fig. 18 Distribution of inference speeds during system testing.

execution, i.e., MinDist, TimeTrig, DistTrig, TimeBrake, DistBrake, Coll, and
CollSpeed.

Table 12 presents the results from executing the test cases representing
operational scenarios with pedestrians, i.e., TC-OS-[1-25]. From the left, the
columns show 1) test case ID, 2) the minimum distance between ego car and
the pedestrian during the scenario, 3) the difference between TimeTrig and
TimeBrake, 4) the difference between DistTrig and DistBrake, 5) whether there
was a collision, 6) the speed of ego car at the collision, and 7) the initial speed
of ego car. We note that 2) and 3) are 0 for all 25 test cases, showing that the
pedestrian is always detected at the first possible frame when TTC < 4s, which
means that SMIRK commenced emergency braking in all cases. Moreover, we
see that SMIRK successfully avoids collisions in all but two test cases. In TC-
0S-5, the pedestrian starts 20 m from ego car and runs towards it while it
drives at 16 m/s — SMIRK brakes but barely reduces the speed. In TC-OS-9,
the pedestrian starts only 15 m from ego car but SMIRK significantly reduces
the speed by emergency braking.

The remaining system test cases corresponding to non-pedestrian opera-
tional scenarios (TC-0OS-[26-38]) and all test cases with jitter (TC-RAND-[1-
38]) were also executed with successful test verdicts. All scenarios with basic
shapes on collision course were rejected by the safety cage architecture, i.e.,
SMIRK did never commence any ghost braking. In a virtual conclusion of test
meeting, the first three authors concluded that TC-RBT-1 and TC-RBT-2
had passed successfully. Finally, Figure 18 shows the distribution of infer-
ence speeds during the system testing. The median inference time is 22.0 ms
and the longest inference time observed is 51.6 ms. Based on these results we
conclude that TC-RBT-3 passed successfully and thus provide evidence that
SYS-PER-REQG6 is satisfied. The complete system test report is available
on GitHub.

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 47

Table 12 Test results of metrics collected during execution of TC-OS-[1-18] and
TC-RAND-[1-18].

ID MinDist(m) A Time(s) A Distance(m) Collision Collision Speed(m/s) Initial
TC-0S-1 18 0.0 0.0 False

TC-0S-2 21 0.0 0.0 False

TC-0S-3 12 0.0 0.0 False

TC-0S-4 3 0.0 0.0 False

TC-0S-5 0 0.0 0.0 True 15.99
TC-0S-6 18 0.0 0.0 False

TC-OS-7 34 0.0 0.0 False

TC-0S-8 28 0.0 0.0 False

TC-0S-9 0 0.0 0.0 True 3.11
TC-0S-10 18 0.0 0.0 False

TC-0S-11 33 0.0 0.0 False

TC-08S-12 27 0.0 0.0 False

TC-0S-13 16 0.0 0.0 False

TC-0S-14 19 0.0 0.0 False

TC-0S-15 1 0.0 0.0 False

TC-0S-16 18 0.0 0.0 False

TC-0OS-17 32 0.0 0.0 False

TC-0S-18 17 0.0 0.0 False

TC-0S-19 25 0.0 0.0 False

TC-0S-20 29 0.0 0.0 False

TC-0S-21 28 0.0 0.0 False

TC-0S-22 4 0.0 0.0 False

TC-0S-23 16 0.0 0.0 False

TC-08S-24 30 0.0 0.0 False

TC-0S-25 36 0.0 0.0 False

10.4 Erroneous Behaviour Log [DD]

As prescribed by AMLAS, the characteristics of erroneous outputs shall be
predicted and documented. This section presents the key observations from
internal testing of the ML model, independent verification activities, and sys-
tem testing in ESI Pro-SiVIC. The findings can be used to design appropriate
responses by other vehicular systems in the SMIRK context.

Tables 7 and 11 show that the AP@Q.5 are lower for occluded pedestrians
(S6). As occlusion is an acknowledged challenge for object detection, which we
previously have studied for automotive pedestrian detection (Henriksson et al,
2021b), this is an expected result. Table 11 also reveals that the number of
FPs and FNs for the S9 slice (children) is relatively high, resulting in slightly
lower AP@Q.5. Table 10 shows that the problem with children is primarily far
away, explained by the few pixels available for the object detection at long
distances. While the SMIRK fulfils the robustness requirements within the
ODD, we recognize this perception issue in the erroneous behavior log.

During the iterative SMIRK development (cf. E) in Figure 4), it became
evident that OOD detection using the autoencoder was inadequate at close
range. Figure 19 shows reconstruction errors (on the y-axis) for all objects
in the validation subset of the development data at A) all distances, B) >
10 m, C) > 20 m, and D) > 30 m. The visualization clearly shows that the

Springer Nature 2021 BTEX template

48 Ergo, SMIRK 1is Safe

00124 0012 4

o A)AI w1 B)>10m

' 0,006 {
_________________ € 0004 fm == == = = = —— = - - -

o
=3
k4

Instance_score
stance score

e

=
3
&

0002 1 0002 1

0.000 1 0000 1

0 10000 20000 30000 40000 0 5000 10000 15000 20000 25000 30000 35000 40000
Index nnay

= C)>20m 1 D)>30m

0.008 { 0008 §
v

ore

c: ewemm w
c: ememm =

& scor

1 0.006 { *1 0,006 {

Instan:
tanc

Q004 = == o o o = o e = = = T 0004 m= e e e e e -

0002 { 0,002 {

0000 { "] o0

0 'A;DC 10500 lSG’CO 2(‘5((255:-0 DBJC 35000 0 5000 10000 15000 20000 25000 30000
ndex index

Fig. 19 Reconstruction errors for different objects on the validation subset of the develop-
ment data at different distances from ego car (magenta=cylinder, yellow=female business
casual, green=male business, orange=male casual). The dashed lines show the threshold for
rejecting objects. In SMIRK, we use alternative B) in the safety cage.

autoencoder cannot convincingly distinguish the cylinders from the pedestrians
at all distances (in subplot A), different objects appear above the threshold),
but the OOD detection is more accurate when objects at close distance are
excluded (subplot D) displays high accuracy). Based on validation of the four
distances, comparing the consequences of the trade-off between safety cage
availability and accuracy, the design decision for SMIRK’s autoencoder is to
only perform OOD detection for objects that are at least 10 m away. We
explain the less accurate behaviour at close range by limited training data,
a vast majority of images contain pedestrians at a larger distance — which is
reasonable since the SMIRK ODD is limited to rural country roads.

11 AMLAS Safety Assurance

This section describes the complete SMIRK safety argumentation organized
by the six AMLAS stages. For each step, we present an argument pattern using
GSN notation (Assurance Case Working Group, 2021) and present the final
argument in a text box.

11.1 Phase 1: Machine Learning Assurance Scoping

Figure 20 shows the overall ML assurance scoping argument pattern for
SMIRK. The pattern, as well as all subsequent patterns in this paper, follows

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 49

(Bl 1.4

Description of the
0ODD.

[El c1a
System safety
requirements
allocated to ML
component

€l c12

System
description

G1.1

]7 The object recognition

component satisfies its
allocated system safety

| requirements in the ODD T A1
o The system safety
D] &g J," prucetis; P;iitig:nmiﬁed
e Com_po_nent requirements allocated
Description to the ML component
$1.1
Argument over the
development and
deployment of the ML
component
0 / \ (66}
ML Safety Requirements ML Deployment
Argument Pattern Argument Pattern

Fig. 20 ML Assurance Scoping Argument Pattern [F].

the examples provided in AMLAS, but adapts it to the specific SMIRK case.
Furthermore, we provide evidence that supports our arguments.

The top claim, i.e., the starting point for the safety argument for the
ML-based component, is that the system safety requirements that have been
allocated to the pedestrian recognition component are satisfied in the ODD
(G1.1). The safety claim for the pedestrian recognition component is made
within the context of the information that was used to establish the safety
requirements allocation, i.e., the system description ([C]), the ODD ([B]), and
the ML component description ([D]). The allocated system safety requirements
([E]) are provided as context. An explicit assumption is made that the allo-
cated safety requirements have been correctly defined (A1.1), as this is part of
the overall system safety process (FuSa and SOTIF) preceding AMLAS. Our
claim to the validity of this assumption is presented in relation to the HARA
described in [E]. As stated in AMLAS, “the primary aim of the ML Safety
Assurance Scoping argument is to explain and justify the essential relationship
between, on the one hand, the system-level safety requirements and associated
hazards and risks, and on the other hand, the ML-specific safety requirements
and associated ML performance and failure conditions.”

The ML safety claim is supported by an argument split into two parts.
First, the development of the ML component is considered with an argument
that starts with the elicitation of the ML safety requirements. Second, the
deployment of the ML component is addressed with a corresponding argument.

Springer Nature 2021 BTEX template

50 Ergo, SMIRK 1is Safe

G2.1
ML safety requirements
SYSMLREQ1 2nd SYS-
MLREQ2 are satisfied in
the development of the

[El 4

The system safety
process has allocated
safety requirements to
the ML component

2.1
Argument over the
specified ML safety
requirements
—

H o
ML Safety <l
requirements

G2
ML model satisfies Rl . £

the ML safety

G2.4

G23
ML model satisfies ML safety

€22 R
ML Data
ML Data A it Patts ML Data Argument Pattern the ML safety requirements are a
pequremen ota Aaert et requirement valid development of

SKSMCREQ] 4.—i >] SYSMLREQ2 the allocated system
~ W] c23 | w] safety requirements
L Learming Argument Patter | i Viogel ML Learning Argument Pattem
~
.

~ sn2.1
Safety cage

architecture

22
Requirements have
been validated in cross-
organizational
workshops within the
SMILE3 project

W1 sn22
ML Salety
Requirements
Validation
Results.

S22
Argument over
satisfaction of

different types of ML

safety requirements

for out-of-
distribution
detection

G2.5 G26

H o4 ML performance ML robustness i
ML Performance safety. safety. ML Perf

Safety Requirements are satisfied are satisfied Safety Requirements

6 performance 4 robustness
safety requirements safety requirements
(B8] B8]

ML Verification ML Verification
Argument Pattem Argument Pattern

Fig. 21 ML Safety Requirements Argument Pattern [I].

ML Safety Assurance Scoping Argument [G]
SMIRK instantiates the ML safety assurance scoping argument through
the artifacts listed in the Table 13. The set of artifacts constitutes the
safety case for SMIRK’s ML-based pedestrian recognition component.

11.2 Phase 2: Machine Learning Requirements Assurance

Figure 21 shows the ML Safety Requirements Argument Pattern [I]. The top
claim is that system safety requirements that have been allocated to the ML
component are satisfied by the model that is developed (G2.1). The argument
approach is a refinement strategy translating the allocated safety requirements
into two concrete ML safety requirements (S2.1) provided as context (C2.1).
Justification J2.1 explains how we allocated safety requirements to the ML
component as part of the system safety process, including the HARA.
Strategy S2.1 is refined into two subclaims about the validity of the ML
safety requirements corresponding to missed pedestrians and ghost braking,
respectively. Furthermore, a third subclaim concerns the satisfaction of those
requirements. G2.2 focuses on the ML safety requirement SYS-ML-REQ1,
i.e., that the nominal functionality of the pedestrian recognition component
shall be satisfactory. G2.2 is considered in the context of the ML data (C2.2)
and the ML model (C2.3), which in turn are supported by the ML Data
Argument Pattern [R] and the ML Learning Argument Pattern [W]. The
argumentation strategy (S2.2) builds on two subclaims related to two types of
safety requirements with respect to safety-related outputs, i.e., performance
requirements (G2.5 in context of C2.4) and robustness requirements (G2.6 in

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 51

Table 13 SMIRK Safety Assurance Table. Numbers in the Input/Output columns refer to
the AMLAS stages in Figure 3. (TBD = AI Sweden has agreed to host our annotated data
(185 GB) and provide it under a CC-BY-NC 4.0 licence, but the permalink is not ready yet.)

ID AMLAS Artifact Title Input Output ‘Where?
to from
A System Safety Requirements 1,6 Sec. 5.1
B Description of Operating Envi- | 1, 6 Sec. 5.4
ronment of System
(C] System Description 1,6 Sec. 4
D] ML Component Description 1 Sec. 8
[E] Safety Requirements Allocated | 2 1 Sec. 5.2
to ML Component
[F] ML Assurance Scoping Argu- | 1 Fig. 20
ment Pattern
[G] ML Safety Assurance Scoping 1 Sec. 11.1
Argument
[H] ML Safety Requirements 3,4,5 2 Sec. 5.3
1 ML Safety Requirements | 2 Fig. 21
Argument Pattern
[J] ML Safety Requirements Vali- 2 Sec. 3.3.1
dation Results
[K] | ML Safety Requirements 2 Sec. 11.2
Argument
L] Data Requirements 3 Sec. 7.1
[M] | Data Requirements Justifica- 3 Sec. 3.3.1
tion Report
N Development Data 3 TBD
O Internal Test Data 3 TBD
[P] Verification Data 3 TBD
Q Data Generation Log 3 Sec. 7.2
R ML Data Argument Pattern 3 Fig. 22
[S] ML Data Validation Results 3 Sec. 10.1
T ML Data Argument 3 Sec. 11.3
U Model Development Log 4 Sec. 8.2
\% ML Model 5,6 4 GitHub repo
(W] ML Learning Argument Pat- | 4 Fig. 23
tern
X Internal Test Results 4 Sec. 10.2.1
Y ML Learning Argument 4 Sec. 11.4
[Z] ML Verification Results 5 Sec. 10.2.2
[AA] | Verification Log 5 Sec. 9.1
[BB ML Verification Argument | 5 Fig. 24
Pattern
[CC] | ML Verification Argument 5 Sec. 11.5
DD Erroneous Behaviour Log 6 Sec. 10.4
EE Operational scenarios 6 Sec. 9.2.1
FF Integration Testing Results 6 Sec. 10.3
GG ML Deployment Argument | 6 Fig. 25
Pattern
[HH] | ML Deployment Argument 6 Sec. 11.6

Springer Nature 2021 BTEX template

52 Ergo, SMIRK 1is Safe

context of C2.5). The satisfaction of both G2.5 and G2.6 are addressed by the
ML Verification Argument Pattern [BB].

Subclaim G2.3 focuses on the ML safety requirement SYS-ML-REQZ2,
i.e., that the pedestrian recognition component shall reject input that does not
resemble the training data to avoid ghost braking. G2.3 is again considered
in the context of the ML data (C2.2) and the ML model (C2.3). For SMIRK,
the solution is the safety cage architecture (Sn2.1) developed in the SMILE
research program (Henriksson et al, 2021a) (described in Section 8.3).

Subclaim G2.4 states that the ML safety requirements are a valid devel-
opment of the allocated system safety requirements. The justification (J2.2) is
that the requirements have been validated in cross-organizational workshops
within the SMILE III research project. We provide evidence through ML Safety
Requirements Validation Results [J] originating in a Fagan inspection (Sn2.2).

ML Safety Requirements Argument [K]
SMIRK instantiates the ML safety requirements argument through a
subset of the artifacts listed in Table 13, i.e., ML Safety Requirements
Argument Pattern [I], as well as: Safety Requirements Allocated to ML
Component [E], ML Safety Requirements [H], and ML Safety
Requirements Validation Results [J].

11.3 Phase 3: Data Management Assurance

Figure 22 shows the ML Data Argument Pattern [R]. The top claim is that the
data used during the development and verification of the ML model is sufficient
(G3.1). This claim is made for all three data sets: development data [N],
internal test data [O], and verification data [P]. The argumentation strategy
(S2.1) involves how the sufficiency of these data sets is demonstrated given the
Data Requirements [L]. The strategy is supported by arguing over subclaims
demonstrating sufficiency of the Data Requirements (G3.2) and that the Data
Requirements are satisfied (G3.3). Claim G3.2 is supported by evidence in the
form of a data requirements justification report [M]. As stated in AMLAS,
“It is not possible to claim that the data alone can guarantee that the ML
safety requirements will be satisfied, however the data used must be sufficient
to enable the model that is developed to do so.”

Claim 3.3 states that the generated data satisfies the data requirements
in context of the decisions made during data collection. The details of the
data collection, along with rationales, are recorded in the Data Generation
Log [Q]. The argumentation strategy (S2.2) uses refinement mapping to the
assurance-related desiderata of the data requirements. The refinement of the
desiderata into concrete data requirements for the pedestrian recognition com-
ponent of SMIRK, given the ODD, is justified by an analysis of the expected
traffic agents and objects that can appear in ESI Pro-SiVIC. For each subclaim
corresponding to a desideratum, i.e., relevance (G3.4), completeness (G3.5),

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 53

C3.2
A Internal test data

G31
The data used to develop
and verify the ML model
is sufficient

N ¢34
Development
data

c3.2
Verification data

$2.1
Argument over
requirements for
data sufficiency

C34
Data Requirements

A =
G3.2
Data requirements are G3.3
sufficient to ensure it is The data generated Q] c3.5
possible to develop an ML satisfies the data Data Generation
model that satisfies SYS-ML- requirements Log
REQ1 and SYS-ML-REQ2

.

§2.2
Argument over
satisfaction of

different types of data
requirements

J31
Analysis of the Pro-SiVIC
“Object Catalog”
(analogous to longitudinal
traffic observations)

[M] Sn3.1
Data
Requirements
Justification
Report

- e —
G34 G3.5 Gl.6 Gi.T
The generated data The generated data The generated data The generated data
meets the relevance meets the completeness meets the accuracy meets the balance
data requirements data requirements data requirements data requirements

[5] sn3a2 [S] sn33 [5] Sn3.4 [5] Sn3.5

Data Data Data Data
Relevance Completeness Accuracy Balance
Validation Walidation Walidation Validation

Report Report Report Report

Fig. 22 ML Data Argument Pattern [R].

accuracy (G3.6), and balance (G3.7), there is evidence in a matching section
in the ML Data Validation Report [S].

ML Data Argument [T]

SMIRK instantiates the ML Data Argument through a subset of the
artifacts listed in Table 13, i.e., the ML Data Argument Pattern [R], as
well as: ML Safety Requirements [H], Data Requirements [L], Data
Requirements Justification Report [M], Development Data [N], Internal
Test Data [O], Verification Data [P], Data Generation Log [Q], and ML
Data Validation Results [S].

11.4 Phase 4: Model Learning Assurance

Figure 23 shows the ML Learning Argument Pattern [W]. The top claim
(G4.1) is that the development of the learned model [V] is sufficient. The

Springer Nature 2021 BTEX template

54 Ergo, SMIRK 1is Safe

G4.1
The development of the
learnt model is sufficient

h A
54.1
Argument over the
sufficiency of the model
development within the
constraints of the target
deployment

P—

G4.2
The selected model satisfies the
ML safety requirements SY3-
ML-REQ1 and SYS-ML-REQ2
when using internal test data

[€]

[X] Sn4.1
Internal
Test
Results

— —

J31
The internal test results
indicate that the model
satisfies SYS-ML-REQ1
and SYS-ML-REQ2

vl

Cc4.1
ML Model

C4.2
ML constraints

G4.3
The development
approach adopted to
create the model is

The type of model
selected is appropriate
for meeting the defined
ML safety requirements

sufficient
- "l
C4.3 T I
Internal Test -~ |
D -
ata - I‘
-
P . 4
G4.4 GA4.5

The model parameters
are appropriate for
meeting the defined ML
safety requirements

U] sna.2
Model
Development
Log

Ul sna3
Model
Development
Log

Fig. 23 ML Learning Argument Pattern [W].

strategy is to argue over the internal testing of the model and that the ML
development was appropriate (S4.1) in context of creating a valid model that
meets practical constraints such as real-time performance and cost (C4.2).
Subclaim (G4.2) is that the ML model satisfies the ML safety requirements
when using the internal test data [O]. We justify that the internal test results
indicate that the ML model satisfies the ML safety requirements (J3.1) by
presenting evidence from the internal test results [X].

Subclaim G4.3 addresses the approach that was used when developing the
model. This claim is in turn supported by two additional subclaims regarding
the type of model selected and the model parameters selected, respectively.
First, G4.4 claims that the type of model is appropriate for the specified
ML safety requirements and the other model constraints. ML development
processes, including transfer learning, are highly iterative thus rationales for
development decisions must be recorded. Second, G4.5 claims that the param-
eters of the ML model are appropriately selected to tune performance toward
the object detection task within the specified ODD. Rationales for all relevant
decisions in G4.4 and G4.5 are recorded in the model development log [U].

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 55

ML Learning Argument [T]

SMIRK instantiates the ML Learning Argument through a subset of the
artifacts listed in Table 13, i.e., the ML Learning Argument Pattern
[W], as well as: ML Safety Requirements [H], Development Data [N],
and Internal Test Data [O].

11.5 Phase 5: Model Verification Assurance

Figure 24 shows the ML Verification Argument Pattern [BB]. The top claim
(G5.1) corresponds to the bottom claim in the safety requirements argument
pattern [I], i.e., that all ML safety requirements are satisfied. The argumenta-
tion builds on a subclaim and an argumentation strategy. First, subclaim G5.2
is that the verification of the ML model is independent of its development. The
verification log [A A] specifies how this has been achieved for SMIRK (Sn5.1).
Second, the strategy S5.1 argues that test-based verification is an appropriate
approach to generate evidence that the ML safety requirements are met. The
justification (J5.1) is that the SMIRK test strategy follows the proposed orga-
nization in peer-reviewed literature on ML testing, which is a better fit than
using less mature formal methods for ML models as complex as YOLOv5.

Following the test-based verification approach, the subclaim Gb5.3 argues
that the ML model satisfies the ML safety requirements when the verification
data (C5.1) is applied. The testing claim is supported by three subclaims. First,
Gb5.4 argues that the test results demonstrate that the ML safety requirements
are satisfied, for which Verification Test Results [Z] are presented as evidence.
Second, G5.5 argues that the Verification Data [P] is sufficient to verify the
intent of the ML safety requirements in the ODD. Third, G5.6 argues that the
test platform is representative of the operational platform. Evidence for both
G5.5 and G5.6 is presented in the Verification Log [AA].

ML Verification Argument [CC]

SMIRK instantiates the ML Verification Argument through a subset of
the artifacts listed in Table 13, i.e., the ML Verification Argument
Pattern [W], as well as: ML Safety Requirements [H], Verification Data
[P], and the ML Model [V].

11.6 Phase 6: Model Deployment Assurance

Figure 25 shows the ML Verification Argument Pattern [GG]. The top claim
(G6.1) is that the ML safety requirements SYS-ML-REQ1 and SYS-ML-
REQ2 are satisfied when deployed to the ego car in which SMIRK operates.
The argumentation strategy S6.1 is two-fold. First, subclaim G6.2 is that
the ML safety requirements are satisfied under all defined operating scenarios
when the ML component is integrated into SMIRK in the context (C6.1) of
the specified operational scenarios [EE]. Justification J6.1 explains that the

Springer Nature 2021 BTEX template

56 Ergo, SMIRK 1is Safe

G5.1
ML Safety requirements
SYS-ML-REQ1 and SYS-
ML-REQ2 are satisfied

P

G5.2
Verification of the ML
model is independent of
the development of the
ML model

[AA] sps.1

Verification

$5.1
Argument over ML
verification approach

l

J5.1
Verification considers
different levels of ML
testing based on peer-
reviewed research

G5.3
The ML safety requirements

the verification data

SYS-ML-REQ1 and SYS-ML-
REQ2 are satisfied when using

iz €541

Verification Data

—

Verification test results
show that SYS-ML-REQ1
and SYS-ML-REQ2 are
satisfied

Sn5.2

Verification
Test Results

G5.5
The verification data is
sufficient to verify the
intent of SYS-ML-REQ1

and SYS-ML-REQ2 in the

G5.6

The test platform is
sufficiently

representative of the

operational platform

oDD

[AA]

Sn5.3
Verification

[AA]

Sn5.4
Verification
Log

Log

Fig. 24 ML Verification Argument Pattern [BB].

scenarios were identified through an analysis of the SMIRK ODD. G6.2 has
another subclaim (G6.4), arguing that the integration test results [FF] show
that SYS-ML-REQ1 and SYS-ML-REQ2 are satisfied.

Second, subclaim G6.3 argues that SYS-ML-REQ1 and SYS-ML-
REQ2 continue to be satisfied during the operation of SMIRK. The supporting
argumentation strategy (S6.3) relates to the design of SMIRK and is again
two-fold. First, subclaim G6.6 argues that the operational achievement of
the deployed component satisfies the ML safety requirements. Second, sub-
claim G6.5 argues that the design of SMIRK into which the ML component
is integrated ensures that SYS-ML-REQ1 and SYS-ML-REQ2 are satis-
fied throughout operation. The corresponding argumentation strategy (S6.4)
is based on demonstrating that the design is robust by taking into account
identified erroneous behavior in the context (C5.1) of the Erroneous Behavior
Log [DD]. More specifically, the argumentation entails that predicted erro-
neous behavior will not result in the violation of the ML safety requirements.
This is supported by two subclaims, i.e., that the system design provides suffi-
cient monitoring of erroneous inputs and outputs (G6.7) and that the system
design provides acceptable response to erroneous inputs and outputs (G6.8).

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 57

G6.1
ML safety requirements SYS-ML-REQ1 and
SYS-ML-REQ2 are satisfied by the
deployment of the ML compaonent into
SMIRK

$6.1
Argument over the
integration and operation

€6.1 [EE]

Operational
Scenarios

SYS-ML-REQ1 and SYS-ML-REQ2
are satisfied under all defined

o operating scenarios when the ML

component is integrated into SMIRK

l

G6.4
Integration test results
show that SYS-ML-
REQ1 and SYS-ML-
REQ2 are satisfied

J6.1
Diverse scenarios
identified through analysis
of the SMIRK ODD

FF] sn6.2
Integration
Test

Results

of the ML component

—.

G6.3
SYS-ML-REQ1 and SYS-
ML-REQ2 are satisfied
thraughout SMIRK operation

-
.
.
~

$6.3

Argument over the
design of the system and
its behavior during
operation

G6.5
The design of SMIRK into which
the ML component is integrated
ensures that SYS-ML-REQ1 and
SYS-ML-REQ2 are satisfied
throughout operation

G6.6
The operational achievement
of the deployed component
satisfies the SYS-ML-REQ1
and SYS-ML-REQ2

56.4
Argument over the
monitoring of and

response to emoneous

behavior

“a

G6.7

System design provides

sufficient monitoring of

efoneous inputs and
outputs

G6.8
System design provides
acceptable system
response to emoneous
inputs and outputs

[DD] 5.1
Erroneous Behavior
Log

Sn2.1
Safety cage
architecture
for out-of-
distribution
detection

Fig. 25 ML Deployment Argument Pattern [GG].

Both G6.7 and G6.8 are addressed by the safety cage architecture that moni-
tors input through OOD detection using an autoencoder that rejects anomalies
accordingly. The acceptable system response is to avoid emergency braking
and instead let the human driver control ego car.

ML Verification Argument [HH]

SMIRK instantiates the ML Deployment Argument through a subset of
the artifacts listed in Table 13, i.e., the ML Deployment Argument

Pattern [GG], as well as: System Safety Requirements [A], Environment
Description [B], System Description [C], ML Model [V], Erroneous
Behaviour Log [DD], Operational Scenarios [EE], and Integration

Testing Results [FF].

Springer Nature 2021 BTEX template

58 Ergo, SMIRK 1is Safe

12 Lessons Learned and Limitations

Long development projects lead to ample experience and many lessons learned.
In this section, we share the lessons learned we believe are the most valuable
for external readers. Furthermore, we discuss the primary limitations of our
work and the most important threats to validity.

Using a simulator to create data sets limits the validity of the negative
examples. On one hand, our data generation scripts enable substantial free-
dom and cheap access to data. On the other hand, there is barely any variation
in the scenarios (apart from clouds moving on the skydome) as would be the
case for naturalistic data. As anything that is not a pedestrian in our data is
a de facto negative example (see rationale for DAT-BAL-REQ3), and noth-
ing ever appears in our simulated scenarios unless we add it in our scripts,
the diversity of our negative examples is very limited. Our approach to neg-
ative examples in the development data, referred to as “background images”
in Section 7.2.3, involved including the outlier example Cylinder [N5]. From
experiments on the validation subset of the development data, we found that
adding frames with cylinders representing negative examples was essential to
let the model distinguish between pedestrians and basic shapes. For ML com-
ponents designed for use in the real world, trained on outcomes from real data
collection campaigns, the natural variation of the negative examples would be
completely different. When working with synthetic data from simulators, how
to specify data requirements on negative examples remains an open question.

Evaluation of object detection models is non-trivial. We spent substantial
time to align the understanding within the project and we believe other devel-
opment endeavors will need to do the same. In particular, we observed that
the definition of TP, FP, TN, and FN based on IoU (explained in Section 9.1)
is difficult to grasp for novices. The fact that FPs appear due to low IoU scores
despite parts of a pedestrian indeed is detected is often counter-intuitive, i.e.,
“how can a detected pedestrian ever be a FP?” To align the development team,
organizations should ensure that the true meaning of those KPIs are commu-
nicated as part of internal training. In the same vein, FP rate is not a valid
metric (as TPs do not exist) whereas FN rate is used in SYS-PER-REQ2
— again internal training is important to align the understanding. What intu-
itively is perceived as a FP on the system level is not the same as a FP on the
ML model level. To make the distinction clear, we restrict the use of FPs to
the model level and refer to incorrect braking on the system level as “ghost
braking.”

ML model selection post learning involves fundamental decisions. Model
selection is an essential activity in ML. When training ML models over several
epochs, the best performing model given some criterion shall be kept. Also,
when training alternative models with alternative architectures or hyperpa-
rameter settings, there must be a way to select the best candidate. How to
tailor a fitness function to quantitatively measure what “best” involves is a
delicate engineering effort with inevitable tradeoffs. The default fitness func-
tion in YOLOvV5 puts 10% of the weight at AP@0.5 and 90% at Mean AP for

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 59

a range of ten IoU values between 0.5 to 0.95. It would be possible to further
customize the fitness function to also cover fairness aspects, i.e., to already
during model selection value models that fulfill various quality aspects. There
is no upper limit to the possible complexity, as this could encompass gender,
size, ODD aspects etc. For SMIRK, however, we decided to do the opposite,
i.e., to prioritize simplicity to gain explainability. As explained in Section 9.1,
our fitness function solely uses AP@Q.5.

OOD scores can be measured for different parts of an image. What pixels to
send to the autoencoder is another important design decision. Initially, we used
the entire image as input to the autoencoder, which showed promising results
in detecting major changes in the environmental conditions, e.g., leaving the
ODD due to nightfall or heavy fog. However, it quickly became evident that
this input generated too small differences in the autoencoder’s reconstruction
error between inliers and outliers, i.e., it was not a feasible approach to reject
basic shapes. We find this to be in line with how the “curse of dimensionality”
affects unsupervised anomaly detection in general (Zimek et al, 2012) — the
anomalies we try to find are dwarfed by the background information. Instead,
we decided to focus on squares (a good shape for the autoencoder) containing
pixels close to the bounding box of the detected object, and tried three solu-
tions: 1) extracting a square centered on the middle pixel, 2) extracting the
entire bounding box and padding with gray pixels to make it a square, and
3) stretching the contents of the bounding box to fit a rectangle matching the
average aspect ratio of pedestrians in the development set. The third approach
was the most successful in our study, and is now used in SMIRK. Future OOD
architectures will likely combine different selection of the input images.

The fidelity of the radar signatures in the simulator matters. While it is
easy for a human to tell how realistic the visual appearance of objects are
in EST Pro-SiVIC, assessing the appropriateness of its radar signature model
requires a sensor expert. In SMIRK, we attached the same radar signature to
all pedestrians, i.e., the one provided for human bodies in the object catalog.
For all basic shapes, on the other hand, we attach the same simplistic spherical
radar signature. Designing customized signatures is beyond the scope of our
project, thus we acknowledge this limitation as a threat to validity. It is possible
that system testing results would have been different if more elaborate radar
signatures were used.

Python is not a valid choice of programming language for safety-critical
development. We are well aware that Python is not an ideal choice for devel-
opment of safety-critical applications. Python is dynamically typed and might
throw type errors at runtime. For our SMIRK demonstrator, the reasons we
chose Python is two-fold. First, using Python enables easy access to numerous
state-of-the-art ML libraries. Second, Python is the dominating language in
the research community and thus others can more easily build on our work. A
real-world in-vehicle implementation would lead to another language choice,
e.g., adhering to MISRA C (Motor Industry Software Reliability Association

Springer Nature 2021 BTEX template

60 Ergo, SMIRK 1is Safe

et al, 2012), a widely accepted set of software development guidelines for using
the C programming language in safety-critical systems.

13 Conclusion and Future Work

Safe ML is going to be fundamental when increasing the level of vehicle
automation. Several automotive standardization initiatives are ongoing to
allow safety certification for ML in road vehicles, e.g., ISO 21448 SOTIF. How-
ever, standards provide high-level requirements that must be operationalized
in each development context. Unfortunately, there is a lack of publicly avail-
able ML-based automotive demonstrator systems that can be used to study
safety case development.

We present SMIRK, a PAEB designed for operation in the industry-grade
simulator ESI Pro-SiVIC, available on GitHub under an OSS license. SMIRK
uses a radar sensor for object detection and an ML-based component relying on
a DNN for pedestrian recognition. Originating in SMIRK’s minimalistic ODD,
we present a complete safety case for its ML-based component by following
the AMLAS framework. To the best of our knowledge, this work constitutes
the first complete application of AMLAS independent from its authors. We
conclude that even for a very restricted ODD, the size of the ML safety case
is considerable, i.e., there are many aspects of the Al engineering that must
be clearly explained.

Based on this engineering research project, representing industry-academia
collaboration in Sweden, we report several lessons learned. First, using a sim-
ulator to create synthetic data sets for ML training particularly limits the
validity of the negative examples. Second, the complexity of object detection
evaluations necessitates internal training within the project team. Third, com-
posing the fitness function used for model selection is a delicate engineering
activity that forces explicit tradeoff decisions. Fourth, what parts of an image
to send to a autoencoder for OOD detection is an open question — for SMIRK,
we stretch the conent of bounding boxes to a larger square.

Thanks to the complete safety case, SMIRK can be used as a starting point
for several avenues of future research. First, the SMIRK MVP enables stud-
ies on efficient and effective approaches to conduct safety assurance for ODD
extension (Weissensteiner et al, 2021). In this context, SMIRK could be used
as a platform to study dynamic safety cases (Denney et al, 2015), i.e., updat-
ing the safety case as the system evolves, and reuse of safety evidence for new
operational contexts (de la Vara et al, 2019). Second, SMIRK could be used as
a realistic test benchmark for automotive ML testing. The testing community
has largely worked on offline testing of single frames, but we know that this
is insufficient (Haq et al, 2021). Third, we recommend the community to port
SMIRK to other simulators beyond ESI Pro-SiVIC. As we investigated in pre-
vious work, highly running highly similar test scenarios in different simulators
can lead to considerably different results (Borg et al, 2021a) — further exploring
this phenomenon using SMIRK would be a valuable research direction.

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 61

Acknowledgment

Thanks go to ESI Group for supporting us with technical details along the way,
especially Erik Abenius and Frangois-Xavier Jegeden. This work was carried
out within the SMILE III project financed by Vinnova, FFI, Fordonsstrategisk
forskning och innovation under the grant number 2019-05871 and partially
supported by the Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by Knut and Alice Wallenberg Foundation.

References

An J, Cho S (2015) Variational autoencoder based anomaly detection using
reconstruction probability. Special Lecture on IE 2(1):1-18

Ashmore R, Calinescu R, Paterson C (2021) Assuring the machine learning
lifecycle: Desiderata, methods, and challenges. ACM Computing Surveys
(CSUR) 54(5):1-39

Assurance Case Working Group (2021) Goal Structuring Notation Community
Standard (Version 3). Tech. Rep. SCSC-141C, Safety-Critical Systems Club,
UK

Barr ET, Harman M, McMinn P, et al (2014) The oracle problem in software
testing: A survey. IEEE Transactions on Software Engineering 41(5):507-525

Ben Abdessalem R, Nejati S, Briand LC, et al (2016) Testing advanced
driver assistance systems using multi-objective search and neural networks.
In: Proc. of the 31st IEEE/ACM International Conference on Automated
Software Engineering, pp 63-74, https://doi.org/10.1145/2970276.2970311

Bolya D, Foley S, Hays J, et al (2020) Tide: A general toolbox for identify-
ing object detection errors. In: European Conference on Computer Vision,
Springer, pp 558-573

Borg M, Englund C, Wnuk K, et al (2019) Safely entering the deep: A review
of verification and validation for machine learning and a challenge elicitation
in the automotive industry. Journal of Automotive Software Engineering
1(1):1-19

Borg M, Abdessalem RB, Nejati S, et al (2021a) Digital twins are not monozy-
gotic: Cross-replicating ADAS testing in two industry-grade automotive
simulators. In: 2021 14th IEEE Conference on Software Testing, Verification
and Validation (ICST), IEEE, pp 383-393

Borg M, Bronson J, Christensson L, et al (2021b) Exploring the assessment
list for trustworthy Al in the context of advanced driver-assistance systems.
In: 2021 IEEE/ACM 2nd International Workshop on Ethics in Software

https://doi.org/10.1145/2970276.2970311

Springer Nature 2021 BTEX template

62 Ergo, SMIRK 1is Safe

Engineering Research and Practice (SEthics), IEEE, pp 5-12

Bosch J, Olsson HH, Crnkovic I (2021) Engineering Al systems: A research
agenda. In: Artificial Intelligence Paradigms for Smart Cyber-Physical
Systems. IGI global, p 1-19

Chen L, Babar MA, Nuseibeh B (2012) Characterizing architecturally signifi-
cant requirements. IEEE Software 30(2):38-45

Denney E, Pai G, Habli I (2015) Dynamic safety cases for through-life safety
assurance. In: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, IEEE, pp 587-590

Dollar P, Wojek C, Schiele B, et al (2011) Pedestrian detection: An evaluation
of the state of the art. IEEE Transactions on Pattern Analysis and Machine
Intelligence 34(4):743-761

Fagan M (1976) Design and code inspections to reduce errors in program
development. IBM Systems Journal 15(3):182-211

Gauerhof L, Hawkins R, Picardi C, et al (2020) Assuring the safety of machine
learning for pedestrian detection at crossings. In: International Conference
on Computer Safety, Reliability, and Security, Springer, pp 197-212

Haq FU, Shin D, Nejati S, et al (2021) Can offline testing of deep neu-
ral networks replace their online testing? Empirical Software Engineering
26(5):1-30

Hauer F, Schmidt T, Holzmiiller B, et al (2019) Did we test all scenarios
for automated and autonomous driving systems? In: 2019 IEEE Intelligent
Transportation Systems Conference (ITSC), IEEE, pp 2950-2955

Hawkins R, Paterson C, Picardi C, et al (2021) Guidance on the assurance of
machine learning in autonomous systems (amlas). Tech. Rep. Version 1.1,
Assuring Autonomy International Programme (AAIP), University of York

Henriksson J, Berger C, Borg M, et al (2019) Towards structured evaluation
of deep neural network supervisors. In: 2019 IEEE International Conference
On Artificial Intelligence Testing (AlTest), IEEE, pp 27-34

Henriksson J, Berger C, Borg M, et al (2021a) Performance analysis of out-of-
distribution detection on trained neural networks. Information and Software
Technology 130:106,409

Henriksson J, Berger C, Ursing S (2021b) Understanding the impact of edge
cases from occluded pedestrians for ML systems. In: 2021 47th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA),

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 63

IEEE, pp 316-325

High-Level Expert Group on Artificial Intelligence (2019) Ethics guidelines
for trustworthy AI. Tech. rep., Directorate-General for Communications
Networks, Content and Technology, European Commission

Horkoff J (2019) Non-functional requirements for machine learning: Chal-
lenges and new directions. In: 2019 IEEE 27th International Requirements
Engineering Conference (RE), IEEE, pp 386-391

IEEE (1998) IEEE recommended practice for software requirements specifi-
cations. Tech. Rep. IEEE 830-1998, Institute of Electrical and Electronics
Engineers

ISO (2019) Road Vehicles - Safety of the Intended Functionality. Tech. Rep.
ISO/PAS 21448:2019, International Organization for Standardization

Képyaho M, Kauppinen M (2015) Agile requirements engineering with pro-
totyping: A case study. In: 2015 IEEE 23rd International requirements
engineering conference (RE), IEEE, pp 334-343

Kassab M, Kilicay-Ergin N (2015) Applying analytical hierarchy process
to system quality requirements prioritization. Innovations in Systems and
Software Engineering 11(4):303-312

Késtner C (2022) Machine Learning in Production. Self published under
a Creative Commons 4.0 BY-SA license, https://ckaestne.medium.com/
machine-learning-in-production-book-overview-63be62393581

Klaise J, Van Looveren A, Cox C, et al (2020) Monitoring and explainability
of models in production. In: Proc. of the ICML Workshop on Challenges in
Deploying and Monitoring Machine Learning Systems

Kochanthara S, Rood N, Saberi AK, et al (2021) A functional safety assessment
method for cooperative automotive architecture. Journal of Systems and
Software 179:110,991

Kruchten PB (1995) The 441 view model of architecture. IEEE Software
12(6):42-50

Lin TY, Maire M, Belongie S, et al (2014) Microsoft COCO: Common objects
in context. In: European Conference on Computer Vision, Springer, pp 740—
755

Liu S, Qi L, Qin H, et al (2018) Path aggregation network for instance seg-
mentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp 8759-8768

https://ckaestne.medium.com/machine-learning-in-production-book-overview-63be62393581
https://ckaestne.medium.com/machine-learning-in-production-book-overview-63be62393581

Springer Nature 2021 BTEX template

64 Ergo, SMIRK 1is Safe

Masuda S (2017) Software testing design techniques used in automated vehicle
simulations. In: 2017 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), IEEE, pp 300-303

Motor Industry Software Reliability Association, et al (2012) MISRA-C
guidelines for the use of the C language in critical systems

Petersson H, Thelin T, Runeson P, et al (2004) Capture-recapture in soft-
ware inspections after 10 years research: Theory, evaluation and application.
Journal of Systems and Software 72(2):249-264

Picardi C, Paterson C, Hawkins RD, et al (2020) Assurance argument patterns
and processes for machine learning in safety-related systems. In: Proceed-
ings of the Workshop on Artificial Intelligence Safety (SafeAI 2020), CEUR
Workshop Proceedings, pp 23-30

Preschern C, Kajtazovic N, Kreiner C (2015) Building a safety architecture
pattern system. In: Proceedings of the 18th European Conference on Pattern
Languages of Program, pp 1-55

Rajput M (2020) YOLO V5 - Explained and Demystified. https:
//towardsai.net/p/computer-vision/yolo-v6%E2%80%8 A- %E2%80%
8Aexplained-and-demystified

Ralph P, Ali Nb, Baltes S, et al (2020) Empirical standards for software
engineering research. arXiv preprint arXiv:201003525

Redmon J, Divvala S, Girshick R, et al (2016) You only look once: Unified, real-
time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp 779-788

Riccio V, Jahangirova G, Stocco A, et al (2020) Testing machine learning based
systems: A systematic mapping. Empirical Software Engineering 25(6):5193—
5254

RISE Research Institutes of Sweden (2022) SMIRK GitHub repository. URL
https://github.com/RI-SE/smirk/

Salay R, Queiroz R, Czarnecki K (2018) An analysis of ISO 26262: Machine

learning and safety in automotive software

Schwalbe G, Schels M (2020) A survey on methods for the safety assurance of
machine learning based systems. In: 10th European Congress on Embedded
Real Time Software and Systems (ERTS 2020)

Schwalbe G, Knie B, Simann T, et al (2020) Structuring the safety argumen-
tation for deep neural network based perception in automotive applications.

https://towardsai.net/p/computer-vision/yolo-v5%E2%80%8A-%E2%80%8Aexplained-and-demystified
https://towardsai.net/p/computer-vision/yolo-v5%E2%80%8A-%E2%80%8Aexplained-and-demystified
https://towardsai.net/p/computer-vision/yolo-v5%E2%80%8A-%E2%80%8Aexplained-and-demystified
https://github.com/RI-SE/smirk/

Springer Nature 2021 BTEX template

Ergo, SMIRK is Safe 65

In: International Conference on Computer Safety, Reliability, and Security,
Springer, pp 383-394

Schyllander J (2014) Fotgéngarolyckor - statistik och analys. Tech. Rep.
MSB744, Swedish Civil Contingencies Agency, URL https://rib.msb.se/
filer/pdf/27438.pdf

Serban A, van der Blom K, Hoos H, et al (2020) Adoption and effects of
software engineering best practices in machine learning. In: Proceedings
of the 14th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), pp 1-12

Song Q, Borg M, Engstrom E, et al (2022) Exploring ML testing in practice:
Lessons learned from an interactive rapid review with axis communications.
In: Proceedings of the 1st International Conference on AI Engineering -
Software Engineering for Al

Tambon F, Laberge G, An L, et al (2022) How to certify machine learning
based safety-critical systems? A systematic literature review. Automated
Software Engineering 29(38)

Tao J, Li'Y, Wotawa F, et al (2019) On the industrial application of combina-
torial testing for autonomous driving functions. In: 2019 IEEE International

Conference on Software Testing, Verification and Validation Workshops
(ICSTW), IEEE, pp 234-240

Thorn E, Kimmel SC, Chaka M, et al (2018) A framework for automated
driving system testable cases and scenarios. Tech. rep., Department of
Transportation. National Highway Traffic Safety Administration. United
States.

Tsilionis K, Wautelet Y, Faut C, et al (2021) Unifying behavior driven develop-
ment templates. In: 2021 IEEE 29th International Requirements Engineering
Conference (RE), IEEE, pp 454-455

de la Vara JL, Ruiz A, Gallina B, et al (2019) The AMASS approach for
assurance and certification of critical systems. In: Embedded World 2019

Vogelsang A, Borg M (2019) Requirements engineering for machine learning;:
Perspectives from data scientists. In: 2019 IEEE 27th International Require-
ments Engineering Conference Workshops (REW), IEEE, pp 245-251

Weissensteiner P, Stettinger G, Rumetshofer J, et al (2021) Virtual validation
of an automated lane-keeping system with an extended operational design
domain. Electronics 11(1):72

https://rib.msb.se/filer/pdf/27438.pdf
https://rib.msb.se/filer/pdf/27438.pdf

Springer Nature 2021 BTEX template

66 Ergo, SMIRK 1is Safe

Wiegers K (2008) Karl Wiegers’ software requirements specifica-
tion (SRS) template. Tech. rep., Process Impact, URL https:
//www.modernanalyst.com/Resources/Templates/tabid /146 /1D /497/
Karl-Wiegers-Software- Requirements- Specification-SRS-Template.aspx

Willers O, Sudholt S, Raafatnia S, et al (2020) Safety concerns and mitigation
approaches regarding the use of deep learning in safety-critical perception
tasks. In: International Conference on Computer Safety, Reliability, and
Security, Springer, pp 336-350

Wozniak E, Carlan C, Acar-Celik E, et al (2020) A safety case pattern for
systems with machine learning components. In: International Conference on
Computer Safety, Reliability, and Security, Springer, pp 370-382

Wu B, Nevatia R (2008) Optimizing discrimination-efficiency tradeoff in inte-
grating heterogeneous local features for object detection. In: 2008 IEEE
Conference on Computer Vision and Pattern Recognition, IEEE, pp 1-8

Wu W, Kelly T (2004) Safety tactics for software architecture design. In:
Proceedings of the 28th Annual International Computer Software and
Applications Conference, 2004. COMPSAC 2004., IEEE, pp 368-375

Zhang JM, Harman M, Ma L, et al (2022) Machine learning testing: Sur-
vey, landscapes and horizons. IEEE Transactions on Software Engineering
48(1):1-36

Zimek A, Schubert E, Kriegel HP (2012) A survey on unsupervised outlier
detection in high-dimensional numerical data. Statistical Analysis and Data
Mining: The ASA Data Science Journal 5(5):363-387

https://www.modernanalyst.com/Resources/Templates/tabid/146/ID/497/Karl-Wiegers-Software-Requirements-Specification-SRS-Template.aspx
https://www.modernanalyst.com/Resources/Templates/tabid/146/ID/497/Karl-Wiegers-Software-Requirements-Specification-SRS-Template.aspx
https://www.modernanalyst.com/Resources/Templates/tabid/146/ID/497/Karl-Wiegers-Software-Requirements-Specification-SRS-Template.aspx

	Introduction
	Related Work
	Method
	Systems Development Using SOTIF
	Safety Assurance Using the AMLAS Process
	SMIRK Development in the SMILE III Project
	Fagan Inspections

	SMIRK System Description [C]
	Product Scope
	Product Functions

	SMIRK System Requirements
	System Safety Requirements [A]
	Safety Requirements Allocated to ML Component [E]
	Machine Learning Safety Requirements [H]
	Performance Requirements
	Robustness Requirements

	Operational Design Domain [B]

	SMIRK System Architecture
	Logical View
	Process View

	SMIRK Data Management Specification
	Data Requirements [L]
	Desideratum: Relevant
	Desideratum: Complete
	Desideratum: Balanced
	Desideratum: Accurate

	Data Generation Log [Q]
	Positive Examples
	Out-of-Distribution Examples
	Preprocessing and Data Splitting

	Machine Learning Component Specification
	Pedestrian Recognition Component
	Model Development Log [U]
	OOD Detection for the Safety Cage Architecture

	SMIRK System Test Specification
	ML Model Testing [AA]
	System Level Testing
	Operational Scenarios
	System Test Cases

	SMIRK Test Results
	Results from Data Testing [S]
	Results from Model Testing
	Internal Test Results [X]
	ML Verification Results [Z]

	Results from System Testing [FF]
	Erroneous Behaviour Log [DD]

	AMLAS Safety Assurance
	Phase 1: Machine Learning Assurance Scoping
	Phase 2: Machine Learning Requirements Assurance
	Phase 3: Data Management Assurance
	Phase 4: Model Learning Assurance
	Phase 5: Model Verification Assurance
	Phase 6: Model Deployment Assurance

	Lessons Learned and Limitations
	Conclusion and Future Work

